UNIVERSITE DES ANTILLES ET DE LA GUYANE Faculté des Sciences Exactes et Naturelles Année universitaire 2005 – 2006 Maîtrise d'Informatique Travaux Pratique Traitement du signal

Rédigé par : Mohamed ABADI (Doctorant) Vincent PAGE (MCF)

TP n° 2

Objectif:

L'objectif de ce TP et de comprendre la transformée de Fourier, de connaître la TF de fonctions usuelles et les propriétés majeures de la TF.

TF de sinusoïde

Soit le signal numérique S_p constitué de 512 échantillons : S_p (k) = $\sin(2\pi p \ k/512)$ pour k variant de 0 a 511.

- 1. Visualisez ce signal pour les valeurs de p suivantes : {1,3,10,100, 200}. A quoi correspond p?
- 2. Calculez la Transformée de Fourier des signaux analogiques correspondants.
- 3. Visualisez la FFT de ces différents signaux. A quoi correspondent chacun des pics ?
- 4. Quelles sont les fréquences normalisées de ces signaux ?

Sans utilisez Matlab, répondez aux questions suivantes.

Soit un signal Analogique S_f (t) = $\sin(2\pi ft)$, que l'on échantillonne à la fréquence 1000Hz en conservant 500 échantillons.

- 1. Quel est l'écart en fréquences normalisées entre deux échantillons de la TFD ?
- 2. Quel est l'écart en fréquences entre deux échantillons de la TFD ?
- 3. Quelles sont les numéros d'échantillons non nuls dans la TFD du signal échantillonné pour f prenant les valeurs {10, 100, 400}

TFD de signaux numériques usuels

Visualisez les signaux numériques suivants, ainsi que le module et la phase de leurs transformée de Fourier. Ces signaux sont définis sur 256 échantillons.

- a. $P_k = 1 \text{ pour } k \in \{1..32\} \text{ et } P_k = 0 \text{ sinon.}$
- b. $D_k = 1$ pour $k \in \{1\}$ et $D_k = 0$ sinon.

Justifiez théoriquement les résultats obtenus.

Reprenez les questions précédentes pour les signaux suivants :

- c. $P'_k = 1 \text{ pour } k \in \{4..35\} \text{ et } P_k = 0 \text{ sinon.}$
- d. P''_k = $1*e^{2i\pi k/10}$ pour $k \in \{1..32\}$ et $P_k = 0$ sinon.

A quoi correspond P'_k par rapport à P_k ? A quoi correspond $TF(P''_k)$ par rapport à $TF(P_k)$? Justifiez maintenant théoriquement les résultats obtenus.

Reprenez les questions précédentes pour les signaux suivants :

- e. $S_k = 2 P_k + 3 D_k$
- f. $P1_k = 2$ pour $k \in \{1..16\}$ et $P_k = 0$ sinon.
- g. $P2_k = 0.5$ pour $k \in \{1..64\}$ et $P_k = 0$ sinon.

Expliquez les résultats obtenus.