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Abstract. This paper deals with image processing. This study takes place in a 
segmentation process based on texture analysis. We use the multifractal ap-
proach to characterize the textures. More precisely we study a particular multi-
fractal spectrum called the large deviation spectrum. We consider two statistical 
methods to numerically compute this spectrum. The resulting spectrum, com-
puted by both methods over an image, is a one dimension spectrum. In the 
scope of this article, we extend these methods in order to obtain a two dimen-
sions spectrum which could be assimilated to an image. This 2D spectrum al-
lows a local characterization of the image singularities while a 1D spectrum is a 
global characterization. Moreover, the computation of the spectrum requires the 
use of a measure. We introduce here a pre processing based on the gradient to 
improve the measure. We show results on both synthetic and real world images. 
Finally, we remark that the resulting 2D spectrum is close to the resulting im-
age of an edge detection process while edge detection using one dimension 
spectrum requires post processing methods. This statement will be used for fu-
ture works. 

Keywords. multifractal analysis, multifractal spectrum, numerical com-
puting spectrum, Hölder exponent, Choquet capacity, 

1 Introduction 

Texture analysis techniques have been intensively studied over the last decades, 
among and the image processing community. Within these techniques, multifractal 
analysis was introduced by Parisi and Frisch [3] to study the singularities of 1d-
signals and has yielded some interesting results. Nevertheless, as many tools of multi-
fractal analysis have been developed initially for 1d-signals, there is no direct way to 
use them on images without loosing the intrinsic 2d-relation between two neighbour 
pixels. For example, [14] used the large deviation spectrum to detect edges in images. 
However, in this study, the computation of the large deviation spectrum considers the 
image as a 1d-signal. 

 



This article deals with the generalisation of large deviation spectrums to the case of 
2d-signals. In order to do so, we will reconsider many approaches from the 1d-case. 
All of these approaches deal with a so-called multifractal spectrum which is roughly a 
tool used to quantify the number of points having the same Hölder exponent (singu-
larity). As the estimation of this number of points is particularly difficult when deal-
ing with discrete data, many numerical approaches can be found in the literature. 

 
The original study [3] was based on the study of the power law behaviour in struc-

ture functions [4, 5]. As the computation used the Legendre transform, the estimated 
multifractal spectrum was called “Legendre Spectrum”. However, as shown by Muzy 
and al. [6], Arneodo and al. [7], the structure function method has many drawbacks. 
Particularly, it does not allow to access to the whole spectrum. They both present a 
new method to apply a multifractal analysis based on a wavelet transform modulus 
maxima [8, 9, 10] still conducting to a Legendre spectrum estimation. 

 
Other authors suggest applying the multifractal analysis on a measure defined over 

the signal itself. Turiel and al [11, 12] compute fractal sets and are particularly inter-
ested on the MSM (Most Singular Manifold) set. MSM allows to characterize a signal 
from a geometrical and statistical point of view applying the gradient operator over 
the initial signal and then using a wavelet transform in order to determine the fractal 
sets. 

 
Lévy-Véhel and al. [13] use the Choquet capacity firstly to define measures, sec-

ondly to determine the Hölder exponents and then to compute the multifractal spec-
trum. In this way, they introduce the kernel method and the histogram method to 
estimate, in a one dimension context, a multifractal spectrum called the “large devia-
tion spectrum” [1]. This spectrum allows to characterize the singularities in a statisti-
cal way. 

 
This last approach, as previously said, was applied successfully in [14] to an appli-

cation of edge detection and is the one we would like to generalise. 
 

The article is built as follow. After having presented some mathematical pre-requisite 
and the way to compute the singularity exponents and 1d large deviation spectrum 
(section 2) we will focus on the 2d case (section 3) in which the resulting spectrum is 
an image. As the spectrum computation depends on the definition of a measure, we 
will test two of them. The first uses the Choquet capacity as in [13, 16] and we will 
introduce a second measure based on the combination of the gradient and Choquet 
capacity. A comparison between the results obtained with each measure will be made 
in section 4. Section 5 is dedicated to conclude the article. 

2   Multifractal formalism 

We present in this section the formalism used to compute the multifractal large de-
viation spectrum. We use the following steps: 



1. Image normalization, 
2. Multifractal measure defined by the Choquet Capacity [13], 
3. Hölder exponents computation, 
4. Spectrum computation. 

 
2.1. Singularities computation 
 
Let µ  be a measure defined over a set [ [ [ [1,01,0 ×∈E , ( )EP  is a partition se-

quence of E  and nν  is an increasing sequence of positive integer.  
In this case, the partitions are defined as follow: 
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For image analysis applications, we choose that the set  is a window of size 

 centred on the point of coordinates 

njiE ,,

n ( )ji, , i.e. n=E nji ,, . This window is slide 

over the whole image by moving the center to its neighbours. In other words, the 
centre of the new set  will have the coordinates njiE ,',' ( ) ( )1,1 +',' += jiji  if the 

movement is over the image diagonal, ( ) ( )1,',' += jiji  for a horizontal one and 

  for a vertical one.  ( ) ( jij ,1', += )i'
Then for each image point ( )ji,  singularities exponents are given by the Hölder 

exponents. 
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. ( ), yx = ( )2,,1 rL njiE ,,  is the size of the partition of E  and µ  the measure 

defined by the Choquet capacity on each window. Table 1. shows a representation of 
an image and three windows, respectively of size { }5,3,1=r . 

In practice ( yx, )α  is determinate by the slope of the linear regression of the fol-

lowing log curve: log ( )([ ]yxBr , )µ  versus ( )rlog . The Figure 1. shows the pro-
jection of the measure, built in Table 2. with a sum operator capacity, over the 
logarithmic scale and also the singularity computation using the slope of the linear 
regres 288.2sion ( ( ), =jiα ). This allows to characterize the behaviour of t

measure 

he 

µ  at the neighb odourho  of ( )yx, . 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

 

64 63 54 47 50 54 61 71 
64 61 51 48 55 61 64 70 
58 54 46 47 59 65 65 67 
46 45 42 46 58 63 62 63 
37 42 45 49 58 61 60 63 
37 46 52 57 63 62 61 66 
41 50 57 62 68 66 63 66 
44 52 57 62 70 68 63 63 

( )ji,  { }5,3,1=r

Table 1. Matrix representing the image and three windows respectively of size r  { }5,3,1=
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Figure 1. Linear regression on a logarithmic scale 
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0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 2.291 2.284 1.867 1.846 0 0 
0 0 2.613 2.368 1.934 1.919 0 0 

0 0 2.311 2.232 1.983 1.995 0 0 

0 0 1.971 1.972 1.899 1.996 0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Table 2. Hölder coefficients after image normalization with { }5,3,1=r and 

5,, == njiEn  

 



For image processing applications, the multifractal analysis is based on the estima-
tion of the multifractal spectrum determined by the Hausdorff dimension [17], the 
Legendre spectrum [13] or the large deviation spectrum [1]. In the scope of this arti-
cle we study the last spectrum. 

The main idea is to use a sequence of Choquet capacities which allows the extrac-
tion of local and global information from the image in order to study the singularity 
behaviour. 

 
2.2. Choquet capacity measure 
 
In this section, µ  is a measure defined by the Choquet capacity. In the literature 

we found many capacities [14, 15] with a general definition having the following 
shape: 

( ) ( ) ( ) ( )jigjiOyx yxBr
,,, ,∈=µ  

With  an operator dealing with the intensity of a pixelO ( )jig , . As examples, we 

can cite: the sum operator ∑=O , which is not a real informative measure of the 

image since it computes the sum of the intensities within a window, the maximum 
and minimum operator respectively max=O  and min=O , which have a low 
sensibility to the singularity amplitude. Other operators have been introduced like 
self-similar or iso operator, more details are given respectively in [16] and [13]. 

 
The main drawback of these operators is their lack of sensibility to the amplitude 

or to the spatial distribution of the singularities. 
In this article, our gait takes as a starting point the work carried out by Turiel and 

al. [11] to determine the fractals sets. We combine one of the previous operators with 
the gradient ∇  computed on each pixel, defined over two axes, and the norm. Thus 
we obtain three measures which are sensible simultaneously to amplitude and spatial 
distribution of the singularities. These measures have the following expression 

( ) ( ), ,x xx y O g x yµ = ∇  

( ) ( ), ,y yx y O g x yµ = ∇  

( ) ( )[ ] ( )[ ]22 ,,, yxyxyx yxxy µµµ +=  

Using these measures we can compute the singularity coefficients along the two 
axes and also that the norm. In this paper, we use, in particular, the gradient norm 
because it allows a correct representation and describe the brusque variations of im-
ages intensity: 
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After the computation of the Hölder exponents, we can focus on the multifractal 

spectrum estimation. In the following of the article, we will study the definition and 
the method to compute the large deviation spectrum. 

 
3. Numerical estimation of the large deviation spectrum 
 
Let us introduce in this section a two dimension adaptation of the two methods de-

fined by Lévy Véhel and al. [1]. This adaptation allows estimating the large deviation 
spectrum from a measure construct by a combination between the previous operators 
and the gradient computed on both axes and previously describing. 

 
This is a way to characterize the singularities and to study their behaviour in a sta-

tistical point of view. In the two dimension case, we define the large deviation spec-
trum as follow: 
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where ( ) ( ) ( ) ( )( ){ }, # , / , ,r rN i j x y i j B x yα α α α  = = 

( ) ( ) ( )

 for the first 

method and 

( ) ( ){ ( ) }, # , / , , ,r rj x y B x y i j ,N i i jε α α α α ε α  = ∈   ε + −  for 

the second one, which is a variant. ( )ji,α  is the singularity in the centre of the win-

dow  of size rB r ,  ( )yx,α  is the singularity within  at the spatial coordinates 

.  
rB

( )yx,
The first estimation using ( )1M  allows to compute the number ( )[ ]jiNr ,α  of 

singularities ( ji, )α  equals to ( )( )yxBr ,α . For the second estimation ( ) , 

 represent the number of 

2M
( ,rN

ε α )i j  ( ),x yα  that belong to the interval 

( )i j ( ),, , i jα ε α ε − +  .  

For image processing purpose, both methods are summarized with the following 
algorithm: 

 
for each pixel , ( )ji,
 for 0m =  to , ,i j nm E=  



   12 += mr
  compute ( )[ ]ji,Nr α  (resp. ( ),rN i jε α   ) 

 
There is three particular values of   m
 110 1 =⇔=⇒= =rBrm  pixel ( ) ( )jiyx ,, =⇔  (minimal window 

size) 
  and 0≠m rnji BEm ⇔≠ ,,  is a window of size 

( ) { }, 1, 2r r× ⇔ ∈ L, , ²rx y  

 rnji BEm ⇔= ,,  is a window of size njinji EE ,,,, ×  where 

( ) { }, ,, 1, 2, , i j nx y E∈ L ²   (maximum window size) 

 
The spectrum will be estimated by the slope of the linear regression 

( )([ ]jiNr ,log )α  versus ( )rlog . Table 3. illustrates the Hölder exponents and 

three windows used to compute the number of singularities ( )( )jiNr ,α  centred on 

. Figure 2. shows the projection over the logarithmic scale and the linear re-
gression for both methods and also the computation of the large deviation spectrums 

 et  . 
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ε
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Then Table 4. shows the large deviation spectrum matrices for both methods. 
 
 
 
 
 
  
 
  
 
 
 
 
 
 

Table 3.  Hölder exponents and windows of size { }5,3,1=r  

0 0  0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 2.291 2.284 1.867 1.846 0 0 
0 0 2.613 2.368 1.934 1.919 0 0 
0 0 2.311 2.232 1.983 1.995 0 0 
0 0 1.971 1.972 1.899 1.996 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
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Figure 2. large deviation spectrum estimation with two methods 3.0=ε . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4. large deviation spectrum matrices with 5=n  

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0.462 0.462 0.000 0.000 0 0 
0 0 0.000 0.000 1.041 0.883 0 0 
0 0 0.000 0.000 0.000 0.833 0 0 
0 0 0.674 1.000 0.000 0.000 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 1.000 1.095 1.136 1.136 0 0 
0 0 1.462 1.195 1.534 1.407 0 0 
0 0 1.000 1.534 1.534 1.512 0 0 
0 0 1.095 1.381 1.557 1.348 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 



4 . Results and experiments 

In this section, we apply the two previous methods for the large deviation spectrum 
estimation over a synthesis image (Figure 3.) and also over an image extracted from 
the FracLab software (Figure 4.). Then we compare the measure that we introduce 
with the other measures (Figure 5, 6.). 

Figure 3. shows that it is interesting to introduce the gradient before applying an 
operator. In fact the three lines are underlined after the computation of the singularity 
exponents.  

Figure 4. shows the singularity results with and without gradient. Singularities 
seem richer when using the gradient. 

The more interesting comparison is shown in figure 5. and 6.. The first notable re-
sult is the display of a two dimensional spectrum. The figures show a better spectrum 
obtained with the gradient operator. Concerning the two methods used to compute the 
spectrum, we notice a better result with the second one due to ε . 

 

    
a)    b)         c) 

 
Figure 3. a) Image representing three lines (horizontal, vertical and diagonal) with a gaussian 

noize ( 6.0=σ ). b) Hölder coefficients with the iso capacity. c) Hölder coefficient computed with the 

gradient operator followed by the isoO =  capacity here ( 5=n ). 
 

   
a)   b)   c) 

 
Figure 4. a) Original image extracted from the FracLab software [2]. b) Singularity exponents 

computed with the min capacity ( 3=n ). c) Singularity exponents computed with the gradient operator 
followed by the O sum=  capacity, with 3=n . 
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Figure 5. a) and b) Large deviation spectrum estimated using the first and second approach 

( 2.0=ε ) with 7=n from the singularity exponents of Figure 4. b). 
 

 

   
 a)     b) 

 
Figure 6. a) Large deviation spectrum estimated using the first and the second approach 

( 2.0=ε ) with 7=n  from the singularity exponents of Figure 4. c). 
 
 
5. Conclusion and future works 
 
This study, deals with large deviation spectrum estimation in two dimensions. The 

first main conclusion is that the measure based on the gradient that we introduce is an 
efficient way to improve intensity variations detection. The second main conclusion is 
that the large deviation spectrum estimate on each pixel according to its neighbours 
gives a local and a global characterization of the information.  

Large deviation spectrum is widely used for segmentation in the following way: 
computation of the singularity, computation of one dimension spectrum, segmenta-
tion of the image by integrating spectrum and singularity. Our approach allows to 
directly obtain a two dimension spectrum which is closed to segmentation. It will be 
interesting to compare the two segmentation results. In the same way, the introduction 
of the gradient before integrating a one dimension spectrum will be compared with 
two dimension spectrum. 

 



In addition by using the second method based on the −ε value can be improve by 
defining a criterion of optimization which allows giving the optε  optimal value is 

under development.  
 
This spectrum has been estimated using two methods based on measures built us-

ing Coquet capacity. It will be interesting for classification and segmentation pur-
poses to combine these different spectrums (one spectrum per measure) in order to 
qualitatively show the interest of this study.  
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