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ABSTRACT

This paper deals with image representation imprearégm
using hybrid color spaces. This representationmigoirtant
because it influences segmentation and classiicagsults.

the inter class variance (maximization) and theairtlass
variance (minimization).

Some researches [6] have proved that classical spkces
are not the most adapted for classification or segation
problems. First of all, all classical color spatese three

We present two improvements of an existing supedvis components which is not necessary or on contrdficent

algorithm to obtain the most adapted hybrid cofmace for

for some classification problems. Secondly, depampdin

a given image. These improvements are based onlta muthe underlying classes, the component combinatibn o

objective optimization leading to a cost-efficiertcgde-off,
and have a theoretical justification. A compariszinthe
different approaches shows that the most adaptédichy
color space is reached with our algorithm and imeso
classification results.

Index Terms— Image color analysis, Optimization
methods, Hybrid color space

1. BACKGROUND

About 20 color spaces ([1-5]) were defined sinc8€11%o

reply to application necessity. These spaces amposed of
three components having a different meaning. Asnge,

some spaces have relations with human vision (sgaces
based on Intensity hue and Saturation: HSV, IHS, 1S)

or were defined for specific applications (XYZ, Ldkls,

...). There are mathematical relations (linear ol) hotpass
from a color space to another.

A color space can be seen as a way to representage in
a three (or more) dimensional manner.

classical color spaces are not the less correkteldor the
most discriminating.

For these reasons, some authors introduce hybridr co
spaces [11-13]. These spaces are composed of drargrb
selection of components taken from classical cefmces.
As an example RIXlis a hybrid color space having 4
components (R from RGB, | from HIS, X from XYZ ahd
from |1|2|3).

2. PROBLEMATIC
Because there is different ways to compute some
components (especially non linear color space based
Intensity, Hue and Saturation) we can find morenti38
different color components. Let us ndtehis number.
The number of hybrid color spaces havingomponents is:
h(n) = [TE4H(N — i)
So the total number of hybrid color spaces H{N) =
TEih@)

For each image to process the main problem is naseliect
the best hybrid color space among this wide nunudfer

The choice of the color space depends on the imagepaces regarding to a defined criterion.

characteristics and then there isn't a unigque caloace
adapted for all image types. The two main critesiane the
correlation and the Discriminating Power (DP).

The correlation

We refer in section 3 to an already existing altponi and
show its limits.
Section 4 and 5 present two optimization ways tprowe

is computed between the differenthe research of the best hybrid color space.

components. We often search a color space whick Bav Section 6 presents the main results and a compariso

low correlation, in other words with informationsttibuted
over all components.

The Discriminating Power (DP) [9-10] represents dhdity
of the color space to separate the information. R&fee to

between the different approaches and section &pteshe
conclusion of this study.

3. EXISTING ALGORITHM

define classes and to localize samples to compu t 3.1, Principle

criterion. It can be computed by different ways vley-
Hottelings or Pillai’s criterion for example) by mbining



An existing way ([11]) to build a hybrid color spgads to
iteratively add a new color component in two susbes
stepH(i) a minimization of the correlation of the hybridao

This first improvement consist on changing a mono-
objective optimization to a multi-objective one (wearch
the hybrid color space having the béSorr, DP) couple

space(ii) a maximization of the discriminating power (DP) instead of alternate Steps 1 and 2).

among selecting spaces.

Step one is done by computing the correlation betwble
current hybrid color space
components) and all the remaining ones and by tiegec
components having a correlation with the currenbriay
color space higher than a given threshold.

Because correlation is defined with at least twmpgonents,
we start the algorithm by examining all accessiiBeples

(the already selectedf components. The existence of non dominated isolsit

[14] leads to keep at the end of each iterationeta of
solutions instead of a unique one. This set isedathe
Pareto set [14] of visited solutions.

Step two is done by selecting among the remainingt the next iteration, we start from the previouwd®o set
components the one that maximize the discriminatingnd add a new component among the remaining ones.

power.
3.2. Limits

This process looks like a local greedy mono-obyecti
optimization algorithm with a neighborhood resioat

The main problem is that
systematically converge to the best hybrid coloacsp
regarding the two criterions (correlation and dis@nating
power). Moreover, with such an algorithm, the awho
implicitly suppose the separability of the two eribns
which is wrong. Figure 1 illustrates these points.

The example is built as follow: we use one dimemgiata
and three components (CC,, C;). Samples are chosen in
order to have a discriminating power greater foitt@n for
C, or G. C, is chosen to be correlated with; @nd
uncorrelated with € The discriminating power is lower for
C; U C5 than forC, U Cj.

The algorithm [11] returr€; U C; as being the best hybrid

color space buf, U C; has a lower correlation and a greater

discriminating power thaf; U Cs.

—HHHH—> Cl
G

Cs

Step 1: G selected ( DP(Q > DP(G)> DP(G) )
Step 2: Gselected ( Corff; U C3) < Corr(C, U () )
Resulting hybrid spacé; U C;

Best hybrid space regarding DP and Cdly U C5

Figure 1. existing algorithm limits

Finally, this algorithm requires a threshold forretation
restriction which can be hard to fix.

4. FIRST IMPROVEMENT: LOCAL GREEDY
MULTI-OBJECTIVE OPTIMIZATION
4.1. Principle

The end criterion is a given number of componeasshed
or else the stability of the Pareto set.

The selection of the final hybrid color space isdmamong
the final Pareto set depending on the applicatibhis
selection translates the Corr-DP trade-off whicm dze
automatically set by founding the inflection poiot the

this algorithm doesn’tPareto curve.
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Figure 2. First optimization

Figure 2 illustrates this algorithm and plots thdrid clor
spaces in the (Corr, DP) plan. Blue discs repreabrtvo
components hybrid color spaces, yellow ones reptekece
components ones and red circle all Pareto solutMfescan
note that the Pareto solutions are non dominatedother
solution has a lower correlation and a higher DP).

4.2. Limits

This algorithm doesn’t allow eliminating a prevityadded
component. This is the greedy aspect of the method.
Because we always start from the previous Paretgwse
don’'t explore every possible solution), some irdgng
hybrid color spaces are perhaps not reachable thith
algorithm. (Black circle in Figure 2).

5. SECOND IMPROVEMENT: LOCAL MULTI-
OBJECTIVE OPTIMIZATION
5.1. Principle

In this second approach we extend the neighborlodalde
current solution to unvisited hybrid color spacesihg (i)
one more component (by adding on@), the same number



of components (by replacing on€jij) a fewer number of
components (by deleting one).

The algorithm only manages one solution. We douitdba
Pareto set at each iteration of the algorithm b w
memorize all non dominated solutions visited durthg
research in order to return a global Pareto set.

The algorithm is the followindi) start from one Pareto
optimal hybrid color space with two componeiis explore
the neighborhood according to the three kind afiditéons

(i) choose among non dominated neighbors the next

retained solution or if it doesn’t exist among qweviously
visited.

The research stops when it reaches an empty netybdob.
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Figure 3. Second optimization
Figure 3. shows an illustration of the algorithnheTvisited
solutions compose as one goes along the Paret(Reet
circles).

5.2. Limits

Because of the local aspect of the algorithm aeddémdom
choice of the next visited solution the resultingré?o set
could slightly differs from one run to another. &sample,
Figure 3 shows some unreached Pareto solutionsckBlal
circles).

6. COM PARAISON

To compare the three algorithms, we use about 2@Qjés
and found the most adapted hybrid color space &mhe
images using each algorithm.

We illustrate obtained results with the image pnésen
figure 4. This image is composed of 6 textures waedare
trying to classify it into 6 classes only by usitige color
information.

Figure 5. shows the results by plotting the cotieta
Discriminating Power couple¢Corr, DP) of the hybrid
color spaces.

To value the quality of the results regarding topalssible
hybrid color space, we exceptionally compute everyrid
color spaces (black points in figure 5.).

Figure 4. lllustration image

The black line is the Pareto set of all possiblbritycolor

space. The blue line is the Pareto set obtainedyuke first
improvement and the red line is the Pareto setimdxa
using the second one.
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Figure 5. Results

First of all, we can see that the Pareto sets bdaby our
improvements are included into the global Pareto Beais
confirms that we obtain non dominated solutionsrédwer,
this Pareto sets are very close (Figure 6).

Figure 6. Zoom of Pareto set



The green star represents tf@orr, DP) couple for the
hybrid color space obtained using the existing .
Even if it is close to the Pareto set, this spacdominated

that the corresponding Pareto set is at leastdedunto the

global Pareto set in order to ensure reaching tlostm

adapted hybrid color space for a given image.

by the two Pareto sets (Al and A2 in Figure 5.). As

example, the red dotted circle shows a hybrid celmace
which dominates it. This illustrates that our altfons reach
better solutions. The red circle is the best catieh-
discriminating power trade-off.

We also plot in figure 5. two classical color spa¢BGB:
black star and HIS: blue star) to show the improsetrof
hybrid color spaces.

Now we compare the classification results obtaingidg a
k-means algorithm apply tdi) the hybrid color space
components resulting from the existing algorithniggiFe

7.a) (i) the hybrid color space components resulting fro

the best correlation-discriminating power trade-gféd
circle in Figure 5) (Figure 7.b).

s - :
a) existing algorithm b) best corr-DP trade-off

Figure 7. Classification results

We can see in Figure 7 that the classificationeien using
the best Corr-DP trade-off than using the hybritbicepace
returned by the existing algorithm.

7. CONCLUSION

The search of an optimal color space to represefitage
leads to explore hybrid color spaces. The way ma the
most adapted one must ensure to reach it in arptatie
time. The wide search space doesn'’t allow exploengry
possible hybrid color spaces. An existing algoritatiows
reaching one but with unfounded principles. We @néswo

improvements to reach non dominating solutions dfar
set) which is a necessary condition to reach thestmo

adapted hybrid color space. These algorithms dififem

their principle and computation time but lead toyvelose
Pareto sets. Considering all realized tests, oprcgehes
always lead to better solutions (at least equitadees) than
the existing algorithm.

Time computation could be reduced by restrictindpridy
color spaces to those build from non linear cladsoolor
spaces, that is to say built from Intensity, Hud aaturation
components. This reduction is made according

applications considerations. The main difficultytésprove
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