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1 Introduction

At the beginning of the space conquest the space-systems where composed of unique satellite. With the
growth of the needs and the explosion of the technologies, the space-systems became more and more
complex. Now they are composed of many satellites working together : we talk about constellation.
The aim of the constellation design, is to optimize the satellite positions in order to obtain the best
performances at the lowest cost. In fact, launching a satellite is expensive and reducing the size of the
constellation is necessary.

The field of satellite constellation design is complex because of the size of the exploration space, the
presence of local optimum, and the time consuming criterion. For this reason, applying any optimization
algorithm over the whole constellation using a black-box criterion leads to an impossible resolution.
To bypass these obstacles we decide to split the constellation and the exploration space to simplify the
search. We also use approximated criterions to reduce the evaluation of a solution and to analyze its
behavior.

The article first presents the terminology and the modelling step of the problem. Secondly we talk about
resolution. The last part shows an overview of the results. On conclusion we present the perspectives
of the algorithm.

2 Terminology and modelling step

In order to drive the optimization process at different levels we decompose a candidate solution as
follow.

A Satellite is defined by six orbital parameters [12] Sat = (a,e,i,w,Q, M) which are respectively
the semi-major axis, the eccentricity, the inclination, the argument of perigee, the latitude of ascending
node, and the mean anomaly.

A Constellation is a set of satellites working together (that is the six orbital parameters of each
satellite). The size and shape of the constellation depend on the application field and also on the
expected performances. In the observation field Spot constellation [10] (figure 1 a) is composed of 3
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Figure 1: Spot and GPS constellations

satellites in a low orbit (822K'm) in order to come back over the same area as soon as possible. For a
navigation purpose GPS constellation [11] (figure 1 b) is composed of 24 satellites at an elevation of
20200 km.

To sort the different kind of orbit we define the notion of Orbital Class which is a set of six fuzzy
intervals [9] over the six orbital parameters that define a satellite. The intervals are fuzzy because the
frontier of many classes are not clearly defined.

The Orbit Database (ODB) is a set of n orbital classes ODB = {Cl;};c[1,n]. Each Cl; integrates
six fuzzy intervals.

We define a Configuration of classes as follow : C; = (S;1, ..., Sin)|Vk € [1,n]S;x > 0. Where Si
is the number of satellites of the Clj class in the C; configuration. There is an infinite number of
constellation that belong to a same configuration (each parameter set that respect the fuzzy intervals
are acceptable).

We associate an evaluation to all of these elements.

Value of a constellation

The optimization process aim to maximize the quality of the constellation. The natural criterion is
based on a simulation process. In fact, a propagation scheme of all the satellites on their orbit is realized
to evaluate the performance of the constellation.

Let us consider in the rest of the article the following situation : We want to find the constellation with
the minimum number of satellite that satisfy a simple coverage of the earth. This study case is only
proposed to illustrate our framework. Several different situations more complex and challenging are
also added in our work.

To evaluate the criterion we have to sample both time and space. The time is a set of p instant
tj(j € [1,p]), the space is a set of ¢ sampled earth areas Ai(k € [1,q]). For each (t;, Ax) couple we
define a local performance P, such as P, (Const,t;, Ay) = 1 if Ay is visible from at least one satellite
of the constellation Const at time ¢;, 0 otherwise. The value of Const is given by

V(Const) = min (Z P (Const, t;, Ag)) (1)

ic[1
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This evaluation is the most reliable value but it is also the most expensive one (time consuming).
Value of a satellite

We set a value attribute to each satellite Sat belonging to the constellation in order to sort them within
the constellation (and to evaluate their contribution to the good or bad performance). This value is
directly compute from the simulation process. It leads to increase the ratio between the time spend
during the simulation and the information returned. We define P, as follow : P>(Sat,t;, Ax) = 1 if Ay
is visible from Sat at time ¢;. The value of a satellite is

V(Sat) => "> Py(Sat,t;, Ay) (2)

j=1k=1
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Value of a configuration

The aim of this evaluation is to sort the configurations to select the one that is able to satisfy the
problem with the best performance.

After having explored a configuration Conf (evaluation of many constellations that belong to this
configuration) we can give a value to the configuration. In our study case we evaluate a configuration
with the following relation

V(Conf) = Cgrrllzsit)éF(V(C'onst)) (3)
where T is the set of visited constellation that match the configuration. The number of visited constel-
lations should be precisely set in order to have a representative value without spending too much time
with the simulation.

Value of a class
To find the interesting classes within the ODB we evaluate their contribution to the value of the
visited configurations. The evaluation of the Cl; class is given by

1
V(Cl;) = Fj * Z S * V(Conf) (4)
ConfeQ

where N; is the number of configurations with S;; > 0, €2 is the set of visited configurations.

3 The algorithm

The decomposition of the problem (search space and criterion) leads to a multi-layer algorithm. Because
of the different nature of the parameters to optimize we decide to apply different optimization technics.
At the lower level we have to optimize continuous parameters (the orbital parameters). We choose a
classical analytical algorithm : the Steepest Descent (SD). At a higher level an heuristical split of
the exploration space is done using the ODB. At the top level a meta-heuristic algorithm, integrating
different memory structures, is used to analyze and improve the search. We use a Tabu Search T'S
with advanced features such as strategic oscillations ([4],[3]).

We detail below both the optimization inside a configuration (see section 3.1) and the search of the
best configuration (see section 3.2).

3.1 Continuous optimization within a configuration with SD

In this section, we simplify the problem by considering the configuration as being set. The problem
consist of finding the optimal orbital parameters for each satellite within their belonging class.

If the configuration we try to optimize is composed of n satellites we can have to set a maximum of
6n parameters. If we apply a typical SD with finite difference algorithm we must evaluate at most 357
neighbors at each iteration [2]. As the evaluation of a constellation is based on a simulation this step
is time consuming and we apply neighborhood reduction to speed up the search.

At the end of this step a value is available for the current constellation (equation 1), for the satellites
that compose the constellation (equation 2), and for the current configuration (equation 3). According
to this last value we update the classes values (equation 4).

3.2 Configuration setting by standard 7'S

This level, based on heuristic and meta-heuristic technics is a local search algorithm. The next config-
uration is choose among the closest neighbors of the current configuration (we can reach a neighbor by
adding or removing a satellite, or by changing the belonging class of a satellite).
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A typical neighborhood search will evaluate all the neighbors before to choose the new candidate. Ac-
cording to equation 3, the value of a configuration is based on many simulation processes (through
equation 1). The size of the neighborhood and the time consuming evaluation of a configuration don’t
allowed such an evaluation.

To choose the new candidate we prefer a cheaper evaluation which is a kind of estimation based on the
previously visited configurations (short term memory structure of T'S).

_ 1 *M(C’) .—71 *” Lk
V2(Ci) = Card(©) * CZE:Q V(Cj) M(Cj)’M(C’) = Card(C) kz::lszk V(Cly) (5)

where (2 is the set of already visited configurations.

At each iteration not all neighbors are present in the candidate list. In fact, a tabu attribute is
defined for both satellites and classes in order to disable some transitions. As an example we don’t
allow to remove satellites recently added (short term memory effect). In the same way classes with
worth evaluation are not used to reach the new candidate.

3.3 Guiding the search at a higher level

To drive the T'S process to promising area we have to correctly manage the tabu attributes of the classes
and the SD — T'S trade-off. This management is done using the long term memory aspect of T'S
with the notion of frequency. If the use of a class leads to poor configurations we set it permanently
tabu. It allows to progressively reduce the configuration space to converge to an optimal subset. This
technics, called strategic oscillations, is coupled with a transfer of the effort from T'S to SD. In order
to reduce the computation time, we voluntary reduce the number of iterations of SD at the beginning
of the algorithm. But as the algorithm runs, we increase the number of SD iterations to catch better
constellations.

The reduction of the configuration space is often linked to the exploration of several areas. During the
search we evaluate the progression of the solution. If the nature of the solution (number of satellites,
used classes) doesn’t change and if the value of the constellation doesn’t increase drastically we apply
a diversification process to guide the search in an other direction.

On contrary, if the quality of the solution increases the intensification process is maintain.

4 Application

To have an overview of the performance of each layer we decide to test them separately before to run
a complete algorithm. According to the problem defined in section 2 page 2 the optimization criterion
is to maximize the number of sample areas covered by the constellation. The optimal constellation is
composed of three geostationary satellites uniformly distribute around the equator.

4.1 Optimization inside the known optimal configuration

For each satellite only one parameter (M) is free. For each SD iteration the number of evaluation to
find the best direction is 3(6=5)*3 = 27.

The SD converges to the best solution (figure 2 a) in few iterations (cf. figure 2 b). The value of the
constellation increase regularly until the optimum value.
We can reduce the size of the neighborhood to accept only one parameter change per SD iteration the
number of evaluation becomes 2 * ((6 — 5) * 3) = 6. The time spend during the evaluation is reduced
by four and the convergence speed is not so affected.
In fact, the gain at the beginning of the descent is higher with the first neighborhood but decreases at
the end as if the evaluations are always time consuming. With the second neighborhood the gain is
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approximately the same during all the process and the total computation time is lower.

4.2 Optimization of the configuration

To test this layer, we voluntary set a lot of elementary classes. All of them are derived from the
Geostationary class by fixing the M parameter. The direct consequence of this choice is to reduce
the SD process to the evaluation of one constellation (all parameters are constant). When leaving a
configuration we are sure to catch the best constellation.

On the other hand the configuration space and the neighborhood increase significantly. We choose
to define 10 classes. The values of M are set in order to have only one best solution (3003 potential
configurations and at most 110 configurations in the neighborhood).

For this particular case we can evaluate all the neighbors (equation 3) instead of doing an estimation
(equation 5). This run converges to the optimal solution (figure 3) by rejecting classes after a diversi-

fication stage (D label on figure 3). At the end of the process the number of visited configurations is
less than two percent.

4.3 Optimization from scratch

We now test the whole algorithm. The OD B is composed of three Geostationary classes. For each class
the range over the M parameter is 2*7” long in order to cover the [0, 2% 7] range. The best configuration
is composed of one satellite of each class with correct M values.

The algorithm converges to the solution in two ways depending on the SD — T'S trade-off.

If the number of SD iteration is sufficient, the algorithm converges to the best solution the first time
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it visits the best configuration. If the number of SD iteration is insufficient, the best configuration is
visited many times before to return the best constellation. But in all cases the best configuration has
a good evaluation leading to conserve it at each strategic oscillation step.

5 Conclusion

To reduce the time spend in the algorithm we can act on different parameters. A good use of this
algorithm results on a compromise between the time spend in SD and the number of explored config-
urations. We can reduce the time spend in SD by reducing the size of the classes. But if we don’t
want to reduce the exploration space (and so potential solutions) we need to add classes. Consequently
the complexity of T'S increases. The choice of the classes (number, size, nature) is determinant for
the algorithm. When exploring the range of the different orbital parameters set, we remark that there
is many ways to gather the orbits and several belong to different classes ( the following set of orbital
parameters (400km,0.1,7/2,0,0,0) belong to the LEO, Elliptical and Polar classes). The cutout and
the selection of the classes should be carefully done for each application.

To extend the performances of the algorithm we should include the detection of good structures. When
exploring the configurations we attribute a value to the selected classes but the good performances are
often due to a combination of different classes. It must be useful to identify such cluster of classes by
extending our 7T'S.

When evaluating a class or a configuration, we only compute the financial cost of the constellation from
the number of satellites. The precision could be increased by using a more realistic cost that depends
on the classes (the cost is not the same for a LEO satellite and for a M EO one).
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