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Abstract 

 
This paper deals with texture classification using a 

multifractal approach. More precisely we analyse the 
singularity/regularity exponent that compose the 
textures because they theoretically carry most of the 
information. The analysis is made using the Legendre 
spectrum. 

Then a parameter vector is computed to describe 
this spectrum in order to classify the textures with an 
unsupervised k-means classifier. The resulting 
algorithm is evaluated against a classification directly 
based on the textures.  
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1. Introduction 
Texture classification is a complex problem because 
there isn’t any precise definition of what is a texture. 
In fact, textures are defined and studied in different 
ways depending on the application. This mainly leads 
to statistical and structural methods [1]. 
 
The choice of classification methods is also not an 
easy task because of the great intensity variability of 
textures. A lot of approaches are present in the 
literature as filtering methods [2, 3, 4], mathematical 
morphology for structural analysis [5, 6], and fractal 
analysis [7]. 
 
Grammatical approaches are also used to extract 
texture construction rules. Other methods extract 
spatial relations between grey levels, such as run 
lengths method introduced by Galloway [8], co-
occurrence matrices [9]. Also authors consider textures 
as random processes and build autoregressive models 
[10], Markov models [11] and so on. 
 
In this article, we will focus on natural textures 
classification, and we will consider that they can be 
considered as random textures. We will show in 
section 6 that the use of Legendre spectrum [12] is of 
great interest for texture classification, compared to 
classification over classical texture features.  
 

Moreover, we will show that the classification based 
on Legendre Spectrum is more robust to the size of the 
texture sample (within some limits depending on the 
coarseness of the texture) which is a workable result 
for the texture classification community as well as for 
people interested in Legendre spectrum. 
 
2. Multi fractal background 
The multifractal theory is the result of works from 
measure theory, dynamical system theory and physic 
statistics. It is considered as a formalism for the 
analysis and the characterisation of signals with a 
geometrical and statistical approach. 
 
The theory is linked to the singularity spectrum 
estimation of a mathematical measure having wide 
variations. More precisely, a simple way to describe a 
signal is to determine its spectrum. The first step is to 
find the adapted measure and next to compute the 
singularity exponent. 
 
In the following, we note T a NxN texture region 
having a compact support E and values in the interval 
[0,…,G]. T(i, j) : E → [0,…,G], where (i,j)∈ N2 is the 
texture coordinate. We apply on T the method defined 
by Stanczyk and Sharpe (1999) [13] and the Legendre 
transform to estimate the multifractal spectrum 
(denoted Legendre Spectrum). 
 
3. Legendre Spectrum estimation 
Let us consider a Borel measure µ defined on [0,1]×[0, 
1] and νn an increasing sequence of positive integers. 
Let us define In(i, j) as follow 
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We choose νn = 2n in order to have a dyadic sequence 
with n = 1, 2, …, log2(N/2). 
Based on thermodynamic statistics analogy Halsey and 
al. [12] propose to compute the singularity spectrum 
from a kind of free energy τ(q).  
 
For all q ∈ ℜ, the following limit exist: 
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Where Pn(i, j) is the probability estimation in a ball of 
radius νn. Let us note that for each q value, µ is 
defined on [0, 1]×[0, 1]. 
 
Now we estimate the singularity exponents, α(q), and 
the Legendre Spectrum, f(q), using the method 
developed by Chhabra and Jensen (1989) [14]. They 
directly compute these values with a linear regression 
applied on both following formula 
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These estimations are respectively obtained by a 
derivation and a Legendre Transform on τ(q). 
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4. Used parameters 
In order to classify the textures we have to characterize 
them. The characterization based on the statistical 
properties directly computed on the grey level 
histogram is commonly used and remind on table 1. 
These parameters are computed using moments [15, 
16]. 
 
In table 1. Zi is a random variable indicating intensity 
and p(Zi) the corresponding histogram value. 
 

Statistical parameters 
Name Expression 
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Standard 
deviation 2M=σ  
Smoothing L = 1 – 1/(1+ σ2) 
3 order moment  
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Table 1. Name and expression of parameters computed on 
texture 

 

We introduce another way to characterize a texture 
using multifractal parameters (Table 2) computed on 
singularity exponent (α) and Legendre spectrum (f(α)). 
 
Some theoretical results [17] show that the information 
given by the singularity exponent is more pertinent 
than the one given by the texture itself. The Legendre 
Spectrum is a way to characterize these exponents. 
 

Multifractal parameters 
Name Expression 
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* αα  

αmin min(α) 
αmax max(α) 
f(αmin) f(min(α)) 
f(αmax) f(max(α)) 
Width |f(max(α)) – f(min(α))| 

Table 2. Name and expression of parameters computed on 
Legendre Spectrum 

 
The figure 1. shows the Legendre spectrum (red curve) 
and summaries the features described in Table 2. 
 
The surface parameter has been used in [16] for 
pattern recognition. As illustrated in figure 1.the 
studied surface is the upper part of the curve limited by 
f(q)=1.8 [16].  
  

 
 

Figure 1. Legendre Spectrum and parameters 
 
5. Data description 
The sample textures are built as follow: each reference 
texture is an image of size 512×512. We extract 
sixteen 128×128 samples and sixty four 64×64 
samples. 
 
The textures used for the illustration are five natural 
textures from the Brodatz album [18] (Figure 2) and 
five forest textures extracted from IKONOS images 
(Figure 3). 



 
The forest textures have been chosen because we must 
treat them in the framework of the CESAR project. 
They present great visual similarities rendering 
characterization more difficult. 
 
 

   

   
 

Figure 2. Brodatz album textures 
 
 
 

   

   
 

Figure 3. Forest textures extracted from IKONOS images 
 
The first sample set, S1, is composed of the 512×512 
reference textures (1×5) and the 128×128 samples 
(16×5 samples). 
The second sample set, S2, is composed of the 
512×512 reference textures (1×5) and the 64×64 
samples (64×5 samples). 
The third sample set, S3, regroups all samples 
((1+16+64)×5 samples). 
 
6. Classification results 
We compare the results of a k-means classifier applied 
using statistical parameters presented in Table 1 
against those of a k-means classifier applied on our 
multifractal parameters (Table 2). 
 

In both cases, we use an unsupervised k-means 
classification where the number of classes is known. 
 
Table 3. shows the results for Brodatz textures and 
Table 4. the results for IKONOS textures. 
 
Brodatz Textures S1 S2 S3 

k-means 
classifier 

applied on 

Texture 0.84 0.7294 0.52 
Multifractal 
spectrum 

0.96 0.80 0.76 

Table 3. Classification rate obtained with Brodatz textures 
 
 

IKONOS Textures S1 S2 S3 
k-means 
classifier 

applied on 

Texture 0.54 0.64 0.48 
Multifractal 
spectrum 

0.83 0.78 0.72 

Table 4. Classification rate obtained with Ikonos textures 
 

Both tables show a better classification in favour of 
multifractal parameters. 
One can note that classification on the Brodatz textures 
is easier than on the IKONOS ones and is linked to the 
nature of these textures.  
 
Rates obtained with IKONOS textures are more 
representative of operational results. Indeed, forest 
textures are quite similar and the choice of 
characterisation parameters is more critical. 
 
Finally the multifractal spectrum is able to deal with 
different samples size. Indeed, the classifications 
applied on S3 sample sets are acceptable with this 
spectrum (0.76 and 0.72 rates) while it is not the case 
with classical features (0.52 and 0.48 rates). 
 
We also note that the classification rate is unstable for 
IKONOS textures when using the statistical 
parameters (Table 4.).  
This is not the case for multifractal parameters and we 
observe a decreasing classification rate depending on 
the size of the texture sample (Table 3. and 4.). 
 
Theoretically, the multifractal spectrum is independent 
from the sample size. We interpret this result by the 
fact that these textures are non-silimar. 
A close value of the classification rate between S1 and 
S2 could be interpreted by a strong similarity between 
the texture samples. 



 
7. Conclusion and future works 
Texture classification is a complex problem, because 
there isn’t any complete way to characterize a texture. 
This work aims to use multifractal theory to improve 
classification. The multifractal parameters that we 
choose lead to better results than the one directly 
obtained from the textures. 
 
Classification results can be improved by different 
ways. Current works try to replace the Legendre 
spectrum by the large deviation spectrum to compare 
the results and combine, if possible, the parameters.  
 
Moreover, other parameters could be extracted from 
these spectrums to complete their description. As 
examples we could extend the surface or compute the 
slope of the line joining the two extremity of the curve. 
 
Finally, we will study more precisely the dependence 
of the multifractal parameters according to the size and 
the resolution of the sample textures.  
Theoretically the multifractal parameters should be 
independent to the texture sample size but, as 
underlined in the result section, this is not the case in 
practice particularly for non-similar textures. 
Concerning resolution, and always theoretically, 
multifractal parameters computed over self-similar 
textures don’t depend on the resolution. We will study 
the impact of multi resolution texture samples on the 
classification for self-similar textures and for other 
kind of textures. 
 
8. Acknowledgment 
The authors want to thank the European institutions for 
the financing of the CESAR (Arborescent species 
classification) project and Guadeloupe, Martinique and 
Guyana regions within the “INTERREG IIIb 
Caribbean Space” European program. 
 
9. References 
[1] Haralick, R.M. “Statistical and structural approachs 
to texture”, Proceedings of the IEEE, Vol. 67, N°7, pp. 
786-804, 1979 
 [2] Matsuyama, T., Miura S.-I., Nagao M. “Structural 
analysis of natural textures by Fourier transformation”, 
Computer Vision, Graph. and Image Proc., vol. 24, p. 
347-362, 1983 
[3] Serra, J. “Image analysis and mathematical 
morphology”, theoretical advances, Academic, vol 2, 
1988 
[4] PATEL, D., Stonham, T.J. “Accurate set-up of 
Gabor filters fir texture classification”, Actes de Visual 
Communications and Image Processing VCIP’95, 
SPIE, vol. 2501, Taipei, p. 894-903, 1995 

[5] Chen, Y., Dougherty, E.R. “Gray-scale 
morphological granulometric texture classification”, 
Optical Engineering, vol. 33, n° 8, p. 2713-2722, 1994 
[6] Heijmans, H.J.A.M. “Theorical Aspect of Gray-
Level Morphology”, IEEE Transactions on Pattern 
Anal. and Mach. Intel, vol. 13, n° 6, p. 568-582, 1991 
[7] Peleg, S., Naor, J., Hartley, R., Avnir, D. “Multiple 
resolution texture analysis and classification”, IEEE 
Transactions on Pattern Anal. and Mach. Intel, vol. 6, 
n°4, p. 518-523, 1984 
[8] Galloway, M.M. “Texture classification using gray 
level run lengths”, Computer Graphics and Image 
Processing, vol. 4, p. 172-179, 1975 
[9] Haralick, R.M., Shanmugam, K., Dinstein, I. 
“Textural features for image classification” IEEE 
Transactions on systems, Man and Cybernetics, Vol. 3, 
No 6, p. 610-621, 1973 
[10] Pratt, W.K., Faugeras, O.D., Gagalowicz, A. 
“Applications of stochastic texture field models to 
image processing”, Proceedings of the IEEE, p. 542-
550, 1981 
[11] Cross, G.R., Jain, A.K. “Markov random field 
texture models”, IEEE Transactions on Pattern Anal. 
and Mach. Intel, vol. 5, n° 1, p. 25-39, 1983 
 [12] Halsey, T.C., Jensen, M.H., Kadanoff, L.P., 
Procaccia, I., Shraimon, B.I., Phys. Rev. A33, 1141, 
1986 
[13] Stanczyk, P., Sharpe, P. “Classification of Natural 
Images from Shape Analysis of the Legendre 
Multifractal Spectrum”, in Dekking et al, Fractals: 
Theory and Applications in Engineering, Springer-
Verlag, London, pp. 67-79, 1999 
[14] Chhabra, A., Jensen, R.V. “Direct Estimation of 
the f(α) Singularity Spectrum”, Phs.Rev. Lett. No. 62, 
1989 
[15] Sheshadri, H.S., Kandaswamy A. “Mammogram 
Image Analysis”, Proceedings of the International 
Conference on Cognition and Recognition p. 742-745 
[16] Caron, Y., Makris, P. Vincent, N., “A method for 
detecting objects using Legendre transform”, RFAI 
team publication, Maghrebian Conference on 
Computer Science MCSEAI, Annaba (Algeria), p.219-
225, 2002 
 [17] Vehel, L., Introduction to the multifractal 
analysis of images, INRIA 
[18] Brodatz, P. “Textures : A Photographic Album for 
Artists and Designers”, Dover, 1966 
 


