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Abstract. This paper presents some considerations about hybrid optimization al-
gorithms useful to optimize real complex system. The given indication could be used
by readers to conceive hybrid algorithms. These considerations have been deducted
from a concrete application case: the satellites constellations design problem. But
each of the advanced techniques proposed in this paper are considered in a more
general way to solve other problems.
This problem is used to illustrate the techniques along the paper because it is group-
ing many characteristics (difficulties) of contemporary real complex systems: the size
and the characteristics of the search space engendered by a combinatorial problem;
The irregularity of the criterions; The mathematical and physical heterogeneity of
parameters forbids the use of classical algorithms; The evaluation of a solution,
which uses a time consuming simulation; A need of accurate values. More details
are available in previous papers ([10], [13], [11], [12]).
For these reasons, we could learn a lot from this experiment in order to detach hybrid
techniques usable for problems having close characteristics. This paper presents the
historic leading to the current algorithm, the modeling of the complex system and
the sophisticated algorithm proposed to optimize it.
Application cases and ways to built significant tests of hybrid algorithm are also
given.

Keywords: Hybrid optimization, metaheuristics, modeling, simulation, constella-
tion design

1. Introduction

This paper explores a hybrid meta-heuristic approach to solve complex
systems optimization problems. These methods are dramatically chang-
ing our ability to solve problems of practical significance. Faced with
the challenge of solving hard optimization problems that abound in the
real world, classical methods often encounter great difficulty even when
equipped with a theoretical guarantee of finding an optimal solution.
So we use such algorithm as classical resolution techniques found their
limits, typically for large combinatorial exploration space.
This paper is more centered on optimization than on space system
design. The main goal is to underline and illustrate the power of hybrid
optimization and the way to introduce expert knowledge to obtain a
more efficient search.
Nowadays, complex systems are defined by a large number of parame-
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ters and operational constraints induce the necessity of accurate values.
These two goals are on opposition and exploring the whole searching
space with accuracy is not feasible in most cases: using techniques to
explore a lot of areas from the searching space doesn’t allow to produce
accurate values, using a local optimization to refine the values doesn’t
allow to drive a global optimization.
In such a case, hybrid optimization gives an elegant solution. We have
to intelligently manage the two approaches to refine values in the neigh-
borhood of good local optima and to privilege the exploration in less
important areas. The orchestration is the key of success and we have
to exploit the best of each technique at the appropriate instant.
The paper is organized as follows.
Section 2 introduces the problem to solve in its general context. It
explains why an optimization process is required with technical and
economical reasons. We also precise the limits of the studied system,
the evaluation process of a solution and the research space.
Section 3 presents a frequently adopted approach by the Constellation
Designer Community. We will analyze its limits to find a new way to
solve the problem.
Section 4 presents the new approach foundations. It details the main
ideas used to design the algorithm (physical signification of the param-
eters, guiding the search, accurate optimization).
Section 5 integrates all these remarks to present the whole algorithm.
All stages are detailed in this section: the knowledge database, both
high and low level stages. A special attention is given to the orchestra-
tion level.
Section 6 presents the tests and applications. We will first validate each
stage separately before to make a global validation. Both telecommu-
nication and navigation application fields are considered.
Section 7 deals with operational use of the techniques. It presents the
developed software and the way to use it. We also give indications to
speed up the algorithm.
Section 8 closes the paper with some conclusions and perspectives.

2. Satellite constellation optimization background

The presentation of the problem in its economical (decreasing the costs)
and technical context (increasing the performances) is necessary to
understand the challenge of the optimization process and the place
of design phase in the whole spatial system.
Halfway between optimization and astronautic the satellites constel-
lations design problems deals with many goals. To find the required
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number of satellites and to correctly set their position, such are the
technical challenges of this study. To minimize the cost and reduce
the time such are the economical challenges the space industries are
confronted in a daily manner ([37]).
In this section, we shortly detail the whole space system and the limits
of the studied system. Then we detail its parameters to show the com-
plexity of the problem: numerous parameters with different physical
and mathematical nature.

2.1. Space systems: towards a sequential optimization

Satellite constellations are currently used in many fields for civil and
military applications: earth observation, telecommunication, naviga-
tion. The implementation of a constellation is a multi step process:
mission analysis, design of the constellation, deployment of the satel-
lites, satellite checking, maintenance, replacement and termination.
Each of these steps must be optimized to decrease the global cost and
increase the global performance.
There are two approaches to conceive such a system: a global approach
which integrates every step in a multi-objective optimization; a local
approach which optimize each step separately.
The first way to solve the problem is currently not practicable for many
reasons: firstly the nature of the problems to solve in each step is too
different to regroup them in a general algorithm. As an example the
deployment step looks like a Constraint Satisfaction Problem (CSP),
where some constraints are satellite launcher availability, payload, cost
and accessible altitude. The evaluation function integrates cost and
time parameters. The design step is a combinatorial problem. The aim
of this step is to minimize the number of satellite (in order to reduce
the cost) and to maximize the performances. Secondly the number
of parameters to set is too large with integer and real variables. For
these reasons, the second approach is preferred ([36]) and each step
is optimized in a different manner. In fact, a step optimization is not
totally uncorrelated from the other one.
As if we optimize only one step, some considerations about the previ-
ous or next step could influence the current optimization process (as
constraints or guide).

2.2. Limits of the system

The system we want to optimize is limited to the constellation. We have
to set the parameters for each satellite that compose the constellation
and also to determine the number of satellites to use.

grandchamp.tex; 1/08/2004; 16:44; p.3



4

A satellite is defined by six orbital parameters (a, e, i, ω,Ω,M) (precise
definition is given in [26]), having physical signification and unit.

− a: semi axis of the orbits ellipse (from 400 km to 36 000 km)

− e: eccentricity of the orbits ellipse (0 to 1)

− i: inclination of the orbit plane (0 to 360 degrees)

− ω: argument of the perigee (0 to 360 degrees)

− Ω: longitude of the ascending node (0 to 360 degrees)

− M : mean anomaly (0 to 360 degrees)

A constellation is defined by N satellites.
Without additional constraints there is no relation between satellites
and the system is defined by 6N independent parameters.
Moreover, the number of satellites (N) is also unknown and the problem
has a variable number of parameters.

2.3. Solution evaluation

The efficiency of a constellation should be guaranty during its rev-
olution period. The duration of the period depends on the orbital
parameters of each satellite and the evaluation is based on an accurate
simulation process.
Usually this simulation is time consuming and depends on many oper-
ational parameters. In fact, ground sampling could change from 10 km
to 100 meters and time sampling from 5 minutes to few seconds. The
performances could be awaited for the whole earth surface or just over
certain areas (north hemisphere, Europe, ....
For each time-space sample we evaluate a local performance value.
This value could be the number of satellites visible from the sample
(telecommunication application), the positioning precision induced by
the local configuration of the visible satellites (navigation application)
or any other technical value.
From this amount of local evaluations, we compute few values (mean,
maximum, minimum) to estimate the constellation performance.
As an example, we used the precision function to optimize a navigation
constellation (such as GPS or GNSS) with the simulation parameters
set as follows

− The time step is set to 1 minute because it is the maximum accept-
able gap between two position values for operational conditions.
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− The ground sample step is set to 10 km around the whole earth
(satellite localization must be available everywhere). This value
has been chosen because it is sufficient for an accurate computation
and acceptable for time consumption. But with such value a second
validation is necessary with a ground sample step at least of 500
m after constellation optimization.

− The local criterion is a triangulation compute in order to evaluate
the local precision. From satellites positions an iterative algorithm
is run to minimize the positioning error (least square method).

− At the end of the simulation process, minimum precision is re-
turned in order to evaluate if the constellation is acceptable, mean
precision could also be returned.

The time to compute is about 30 seconds on a Pentium IV 2Ghz. We
could already note that there is a lack of information returned by an
evaluation compared to the time spends during the simulation.

2.4. Research space

The research space is generated by the 6N parameters. N is an integer
and the 6N parameters are real variables.
Theoretically the searching space is infinite. In some optimization con-
texts we conserve compact intervals. This is the case when defining a
parameter as a combination of others. For example, if we want an orbit
with a one day period, there is a relation between a an i ([26]).
In most application cases, a sampling of each interval is made. The
problem is converted to a combinatorial problem with a very large
searching space. In fact, the sampling step could be of 100 meters for
a, 0.01 for eccentricity and 0.1 degrees for each other range.
In such a context the size of the space has about 6.1021 elements
(356000 ∗ 100 ∗ 36004) for each satellite.
For a constellation with N satellites the searching space has (6.1021)N

elements.
For a constellation with an unknown number of satellites included be-
tween 1 and N the searching space has about (6.1021)

N(N+1)
2 ((6.1021)1+

(6.1021)2 + ...+ (6.1021)N ). N could be equal to 100.
With such a searching space, an exhaustive search is impossible.
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3. The first approach: an instructive failure

3.1. Principe

In front of a complex problem with many parameters, a large searching
space, an expansive evaluation and without rules to predict the impact
of a modification to the value of the solution, the first idea is to use an
algorithm which is reputed to treat any kind of optimization problem
with a statistical guaranty to reach the best solution and without any
consideration about the nature of the problem.
As if there is no universal algorithm there is some algorithm quiet easy
to parameter for any kind of problem. Genetic algorithms are part of
them. The main advantage is that the research process is a standalone
process using basic operators like selection, crossover or mutation.
With such an algorithm, the resolution is theoretically easy. But when
considering the wide search space, the population has to be very large
(several thousand) in order to leads to a significant global optimization.
When adding the time consuming criterion, this way looks unfeasible
and the first idea is to reduce the complexity of the search space.

3.2. Reducing complexity: exploration of regular or
symmetric constellations

Usually, engineers reduce the complexity of the search space by link-
ing parameters. We artificially reduce the number of parameters to
optimize. For example, fixing a common altitude, inclination and ec-
centricity reduce the parameters from 6N to 3(N+1).
Such approach reduces the kind of solution the algorithm could reach.
In this way, only symmetrical solutions are explored (same kind of orbit,
...).
This is the case of Walker constellations ([57]) which are composed
of satellites having the same altitude and inclination with a uniform
distribution of the orbits around the earth and a uniform distribution
of the satellites around the orbits.
With such constraints, the optimization algorithms are skewed and
willingly designed for symmetric resolution.

3.3. An incomplete panel of solution

Such symmetric solutions have intrinsic properties. We could easily
design a constellation that satisfied the required local performances but
without any guaranty about the number of satellites (which is directly
linked to the cost of the constellation).
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Moreover some recent constellations ([28],[30]) are composed of dif-
ferent kind of orbits (tundra, circular, heliosynchronous) and are not
accessible from a symmetric point of view.
Designing a symmetric constellation as a starting point for the opti-
mization could appear to be a good idea but the local optimum created
by this constellation is so attractive that we must totally break the
symmetry to access other kind of solution.
More details on classical approaches are available in the literature ([31],
[33], [35]).

4. The new approach foundations

Born from the limits and drawbacks of the previous method and several
preliminary studies, this approach tries to answer to all expectation in
a more constructive way than the previous one.
Based on a better use of the simulation and on a simplification of
the criterions, the algorithm is composed of several levels and uses
different optimization techniques: it integrates a knowledge database
on the orbits and a numerical optimization process both orchestrated
by a metaheuristic algorithm.
The main idea is to bypass the drawbacks with a decomposition of
the system in order to adapt the algorithm to the nature of the sub-
problem.
When dealing with a wide, dark and compact search space, we have
to find a way to introduce an ”exploration map”, a ”spot light” and a
”magnifying glass”. Following subsections describe the way to materi-
alize this representation.

4.1. Physical signification of the parameters: splitting
the search space (the spot light)

For each complex system we advise to make a particular effort to
precisely understand the influence of each parameter to the system
behavior.
If we consider the physical signification of the parameters we could
classify them according to their importance or influence to the solution.
A small variation on a parameter could dramatically change the solu-
tion evaluation or on contrary a coarsely variation could have a least
effect.
In our application, the physical differences of the parameters previously
underlined as being a drawback for a general optimization process
without precise consideration will become an advantage in the new
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modeling.
In fact, for some parameters (a, i,Ω) we could easily analyze their
impact on a single orbit. The information given is not extensible to
predict the interaction with other orbits because the main problem
becomes the synchronization of the satellites.
For example, the parameter a has a direct influence on the area visible
from the satellite and the parameter i is linked to the accessible latitude.
So we could divide the parameters ranges into logical subset.
These considerations are at the origin of the expert knowledge intro-
duced in the next section.
The advantage of such an approach is to reduce the complexity (com-
binatorial) without reducing the panel of solution.
So the better way we found is to organize the search in order to split
the space into logical areas. If these areas are intelligently conceived,
we could evaluate the ability of each one to resolve the problem and so
dramatically reduce the exploration.
This will become an essential actor of the algorithm success and the
way to bring light to the search.

4.2. An efficient progression: guiding the search to avoid
blind optimization (the exploration map)

As if we intelligently organize the search space, there are a lot of areas
to explore. We have to manage this exploration in order to guide or
constraints it. We use information given by the previous study (param-
eters) to select the areas, information given by users to constraint the
search in a selected way, information returned by previous search. The
goal of this part of the algorithm is twice: driving the search among
the different areas and coordinates the ratio between local and global
search.
Advanced metaheuristics techniques will be used to ensure the effi-
ciency of the progression.

4.3. An accurate optimization: local intensification of the
search (the magnifying glass)

After the localization of the interesting area, we have to precisely set
the value of each parameter. This part of the optimization process deals
with fine local optimization.
Specifications are not the same for the algorithm to employ. It must be
able to reach a local optimum very quickly. The techniques used are
close to classical optimization.
A special reflection must be done in order to integrate the possibility
of multiple local optima in the same area (in the sense of previous
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subsections).
In fact, additionally to previous drawbacks, the criterion used to eval-
uate a solution usually presents some unfriendly characteristics: many
local optima, chaotic surface.
Combining with previous algorithm, we hope being able to explore a
wide space and to precisely analyze only interesting one.

4.4. Learning from the simulation: converting evaluation
time to optimization time.

As previously underlined, the evaluation criterion is time consuming
and produces few values. Moreover the simulation doesn’t return per-
tinent information about the good or bad properties of the satellites.
These values don’t allow differentiating satellites within the constella-
tion in order to modify the orbit of less efficient one.
The idea is to use the simulation process to compute many other values
for each satellite in order to evaluate their contribution to the efficiency
of the constellation.
This computation induces a fee to the evaluation function but the
pertinence of the gain justifies the effort. Moreover the overload is
not proportional to the number of values because some of them are
computed for each time step instead of for each time-space sample.
For example, a value (per satellite) could be the duration of visibility
from the interesting area (telecommunication or earth observation sys-
tem) or the number of time a satellite is implied in a high precision
positioning triangulation (navigation system).
These values will be used during the main algorithm presented later in
the paper in order to guide the progression.

5. Modeling: Towards a multi stage optimization

When considering all previous remarks and advises a multistage hy-
brid algorithm comes naturally. In fact, there is a local and a global
approach, an accurate optimization and a wide exploration need. Prob-
lems to solve are totally different and must be parsed in order to be
treated.
Other hybrid approach are presented in the literature ([38]). We define
three stages for the algorithm: a numerical stage dealing with accurate
optimization in a local context; a heuristic stage introducing expert
knowledge to organize the search space; a metaheuristic stage managing
the progression of the search.
Each stage is detailed in the next subsections.
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5.1. The knowledge interconnection stage: the orbit
database

The Orbit Data Base (ODB) is the tool that allows restricting and
organizing the search space. It is the way to introduce expert knowledge
by the definition of Orbit Classes. According to the characterization of
an orbit (Section 0), each class defines a subset of values for each of the
six orbital parameters. In fact, a class regroups orbits with common
characteristics (altitude, periodicity, inclination, eccentricity, periodic-
ity ...). That is to say, a class is combination of ranges ([13], [19]) for
some orbital parameters, fixed values or relations for others. As an
example, if we want to represent orbits which have a revolution period
of one day (useful for a daily earth observation) we define a relation
between parameters a, e and i. In such a case, the class is not composed
of successive orbits.
Now we directly manage classes instead of satellites (a satellite is a
sample of a class). This naturally organizes and split the search space
into two hierarchical subspaces: subspace of classes and subspace of
satellites within a class. The subspace covert by the set of classes is
not necessarily the whole search space (search space engender by the
accessible orbit defined by the six orbital parameters). Moreover, classes
are not necessarily disjointed.
In fact, in standard classification ([16]), each sample has to be assigned
to exactly one class. The ODB relaxes this requirement by allowing
gradual memberships, offering the opportunity to deal with satellites
that belong to more than one class at the same time.
This fundamental characteristic of the ODB is extended with fuzzy
concepts ([17], [18], [19]) allowing a flexible frontier between classes.
In our application case, the introduction of fuzzy classes is necessary
for many reasons.
First of all, many orbital classes haven’t a well defined border. For
example, we frequently talk about Low Earth Orbit (LEO) to represent
orbits starting with an altitude of 400 km. We also talk about Medium
Earth Orbit (MEO) to represent orbits near 12 000 km altitude. But
what about an orbit with 6 000 km altitude? Is it a LEO or a MEO
one? The transition between LEO and MEO is not so easy to express
and the use of fuzzy borders allows a smooth transition between classes.
Secondly, this property appears very useful during the progression of
the search because the definition of this intersection between classes
allows a natural transition between them.
In fact, when changing a solution, it frequently appends to reach the
border of a class. In such a case, we exchange the current class with
one that contains the solution (intersection not empty).
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Figure 1 illustrates these characteristics. The number and the nature

Figure 1. Search space decomposition

of the classes are determinant for the efficiency of the search and the
characteristics of the returned solution.
The parameters that constraint the different stages (number of itera-
tions, thresholds, ...) will also depend on the classes definition.
In fact, as an example, if the ODB is composed with a lot of small
classes, an effort will be made for the high level stage to choose the
representatives classes and their proportion. On contrary, with less but
larger classes, the low level stage will be used to refine the parameters
of each satellite.
Now a satellite becomes a handler of a class (the satellite parameters
take their value in the fuzzy range defined by the belonging class).
As a constellation is a combination of satellites, a configuration is
defined as a combination of ODB class handlers. The fundamental dif-
ference between a constellation and a configuration is that one configu-
ration contains a set of constellation (each constellation whose satellites
verify the corresponding ODB class). We could compare the configura-
tion space to the constellation space in the same way as in section 2.
Examples of orbits are given in Figures 2-a, 2-b, 2-c, 2-d. in order to
illustrate the panel of accessible classes. When designing the ODB,
we have to define a complete package to manipulate the classes. In
a general way, it includes the definition of the elements (accessible
orbits), an order to browse them and an operator to compare them.
We also have to define a notion of distance between classes, orbits and
configurations.
For more details readers are invited to refer to previous works ([13]).
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d) MEO, inclined, decentered
orbit

Figure 2. Orbit sample

We note Clk a fuzzy orbit class, m the number of classes, Clkk=1..m the
ODB and Cfk a configuration.

5.2. High level stage: the case of Tabu Search

Tabu foundation This level tries to answer the question ”which config-
uration to explore and how to explore it?”. The goal of this level is to
manage the search.
The Tabu Search method ([3],[4],[5]) has been retained because it is
a local search method avoiding heaviness of managing a population of
solution and because it integrates the notion of history through memory
structures.
This algorithm is very complete and enables learning from previous
exploration to predict future progression.
The neighborhood used for the high level stage is composed of con-
figurations. At an iteration of the algorithm, we have to choose the
successor of the current confirmation between the configurations that
composed its neighborhood.
As it is a local search, we define the neighborhood as follow. A neighbor
of the configuration Cfi is any Cfj configuration obtained by

− Adding a new handler of a class to the current configuration. There
is m (number of classes in the ODB) derived moves.
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− Removing a handler of a class from the current configuration.
There is N (number of satellites in the current constellation) de-
rived moves.

− Replacing the belonging class of a handler in the current config-
uration. The number of derived moves depends on the composi-
tion of the configuration (number of represented classes) and the
composition of the ODB (total number of classes).

The authorized moves looks very simple but it ensures a continuity of
the search.
The tabu state is set according to the analyze of the memory structures.
The selection of the successor is done according to a balanced random
choice based on a coarsely evaluation of each non tabu neighbor con-
figuration.
We will explain more precisely the evaluation and selection process in
the rest of the section. M emory management
The inspiration of Tabu Search to design the high level stage leads us
to introduce different kinds of memory structures.
The memory aspect of Tabu Search is essential to drive the search on
good conditions.
Short term and long term memory are present in Tabu theory and
accompanied by their own special strategies.
The effect of both types of memory may be viewed as modifying the
neighborhood of the current solution.
Each memory structure is a kind of history filter which memorize in-
teresting characteristics. We implemented all these structures to have
a complete algorithm.
Tabu history analyzing is based on both short term memory (recency-
based memory) and long term memory (Quality, Influence, Frequency).
Short term memory forbid to visit recently explored solutions. Long
term memory allows to analyze the good or bad effect of certain choice.
The Quality aspect of the memory is used to qualify the contribution
of transition to the improvement of a solution.
In our application case, if the addition of a Clk handler often improve
the evaluation of the solution (increase performances and/or decrease
the costs), the corresponding class will be notify with a high quality
value.
The quality value could be affected to each elements of the system: a
class, a configuration, a satellite, a transition.
For a configuration there are two steps in the attribution of a quality
value. First choosing a configuration among neighbor means evaluat-
ing them before any exploration (if we don’t want to make a random
choice). Secondly, after the exploration of the configuration with the
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low level algorithm we could precisely evaluate it.
The post evaluation of the configuration is a kind of mean constellation
value.
The evaluation of a class is a balanced mean of the configuration values
where the class is represented.
The pre evaluation of a configuration is based on the evaluation of the
classes represented in the configuration.
Then a satellite evaluation is directly linked to the simulation process
presented in section 2. We compute separated values for each satellite
in order to learn from the simulation to manage the memory.
More details about the expression of the different values are given in
([13]).
The frequency memory aspect gives information about the number of
time we use a move (or a derived move). This indication is used for di-
versification or intensification process (developed in the continuation).
We could already note that the exploration history take a predominant
part in the quality memory management.
The consequence is that the search is starting with a masked neighbor-
hood (random exploration) and values become more and more precise
as the search is going on.
High level decisions (exploring a configuration or another) are more
and more pertinent and the search is expected to be more and more
efficient.
To avoid the blind starting search, we advise to adopt a kind of learning
phase in the neighborhood of the starting solution (configuration). This
learning phase consist of exploring as much configuration as possible in
order to give a first idea of the quality evaluation.

5.3. Low level stage: the case of Steepest Descent

The low level stage has been designed to quickly reach a local optimum
in a restricted area. This area is limited by the current configuration
(authorized values for a satellite within its belonging class).
The goal is not to explore every constellation within the current con-
figuration but to rapidly reach a good solution in order to evaluate the
potential of the configuration to solve the problem.
At the origin, this algorithm was a simple Steepest Descent. This
algorithm has been chosen as if it could encounter slow convergence
because of simplicity of implementation. But the criterion used for our
applications is irregular and present many local optima.
So we propose an evolved Steepest Descent algorithm with a restarting
strategy in order to bypass the local maxima.
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The restarting strategy is a random modification of some orbital pa-
rameters. Parameters are selected according to their progression during
the steepest descent phase. We select the parameters having changed
the least during this phase.
We should note that this restarting strategy is a kind of diversification
phase from the low level point of view but stays a local intensification
phase from the previous high level stage.
This low level is not the main part of the algorithm because it has a
precise and restricted role but its operational implementation is not
necessarily easy.
Memory is also present at low level optimization. In fact, during the
search it is possible to come back to a configuration already visited. In
such a case, we have to restart the search from the last visited solution
or from the best encountered solution.

5.4. Precisely tuning low and high level optimization
parameters: the role of Strategic Oscillations for
intensification and diversification ratio.

When analyzing the whole algorithm, we could note the multitude of
parameters. The low level stage includes a threshold for the detection
of a local optimum, a number of iterations, a progression step .... The
high level stage includes a threshold on class values for the tabu state,
a neighborhood size, a range for the number of usable satellites ...
Fixing a value for each parameter is not so easy for many reasons.
Firstly, the thresholds and ranges of each parameter strongly depend
on the use case. We calibrate the algorithm for each space system
application (navigation, earth observation and telecommunication).
Secondly, the optimization needs change during the search. At the be-
ginning, we have to explore several areas in order to locate the most
interesting one before to deepen more accurately few configurations at
the end of the search.
Moreover, the parameters depend on the search progression itself. In
case of a satisfying search, an intensification phase is preferred in order
to exploit the local area. On contrary, if the search is not concluding,
a diversification phase starts to reach other areas.
This part of the algorithm is the key of the success. It coordinates the
different techniques and algorithm to apply the most adapted one.
We use Strategic Oscillation techniques presented in the Tabu theory
([5]) to realize such a coordination.
The two phases are sequenced as follow.
The intensification phase (I)
N umber of satellites. At the beginning of the phase, the number of
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satellites included in the constellation belongs to a wide range; As the
search progress, the number of required satellites becomes more and
more precise and the tolerated number of satellite is centered on a
mean value.
N umber of used classes. At the beginning of the phase, the number of
usable classes is composed of the whole ODB. According to their value
(computed from the simulation and exploration process) more and more
classes are rejected (tabu state) as the intensification progresses.
The first consequence of this two evolution is a reduction of the neigh-
borhood which facilitates the progression of the search at the high level
stage.
Low level optimization At the beginning of the phase, the low level
stage is run with a few number of iteration and with low threshold in
order to exit the optimization process very quickly. This parameters
are regularly increased to make an more accurate low level optimiza-
tion. With such evolution of the different parameters, we progressively
transfer the effort (computes and time) from high level to low level.
The Diversification phase (D)
After a long period of intensification, the search doesn’t evolve any-
more: the value of the best solution doesn’t increase significantly; Vis-
ited configuration doesn’t change. At this time, a diversification process
is engage in order to explore other configuration types. The choice is
making according to memory structures (frequency, recency) filled dur-
ing the intensification phase. In fact, the less used classes are integrated
to create a new configuration which will serve as a new departure for
the high level stage.
Figure 3 summarizes all the developed notions.

Figure 3. Strategic Oscillations
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6. Tests and applications

6.1. Principe

The validation of a hybrid algorithm is a challenging step. We have
to analyze its behavior from different point of view: time computation,
suitability of returned solutions, pertinence and efficiency of each stage.
To precisely analyze the behavior of the algorithm, we have to validate
each stage separately before to make a global validation. In this paper,
we are overall interested on optimization performances, more consider-
ations about time are given at the end of the paper and in other papers
([11],[12],[10],[13]).
Another relevant consideration (and difficulty) is that for most of the
applications we don’t know the best solution or simply a good solution.
This remark could be applicable for many other complex systems.
To evaluate the low level optimization, we have to abstract the high
level stage. So we set the configuration before to run the optimization
process.
To evaluate the ability of this level to reach a good and/or the best
solution we choose different kind of configurations: some configurations
which contain a solution to the problem and some configurations which
don’t contain a solution.
The test of the high level stage must confirm the efficiency of the
configuration navigation algorithm. We have to abstract the low level
optimization. Then the corresponding algorithm must return the best
solution within a configuration in order to inhibit the influence of the
low level.
The corresponding algorithm (low and high level) is reduced to a com-
binatorial optimization process. After the separate validation, we have
to integrate each stage to make a global validation of the algorithm.
The main objective of this part is to finely tune the strategic oscillations
to manage the low and high level trade-off during the search. In fact,
time and iteration ratio change with the progression of the search.
The tests are also a way to analyze the behavior of the algorithm. So
we should run scenarios we can check during their entire development.

6.2. Numerical stage validation

In our case, the validation has to be done for different application
fields and we choose to apply the algorithm to telecommunication and
navigation space system.
We present here a scenario for a continuous coverage of the [-70, +70]
latitude band. We know an acceptable solution with 3 Geostationary
(GEO) or 3 Medium Earth Orbit (MEO) satellites. So we both test
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the algorithm with 3 and 4 satellites in order to compare the results.
There is no restarting strategy for this first test. Four initial solutions
are injected to the algorithm and chosen as follow

− P0 : 3 Low Earth Orbit (LEO) satellites (4 LEO satellites)

− P1 : 3 Medium Earth Orbit (MEO) satellites (4 MEO satellites)

− P2 : 2 LEO + 1 MEO satellites (2 LE0 + 2 MEO satellites)

− P3 : 1 LEO + 1 MEO + 1 Geostationary (GEO) (2 LEO + 1 MEO
+ 1 GEO)

Table I. Scenario 1 [-70, +70] latitude band coverage without
restarting strategy

NSD = 1000 PSD

Time/Val a,i a,i, e, w a,i,e,w,W,M

Scenario 1 P0 16-15/280 32-18/315 47-55/362

3 Satellites P1 16-38/1816 31-58/1756 48-17/1793

Vmax=2016 P2 16-15/784 32-22/724 48-31/637

P3 16-56/1346 32-14/1278 48-29/1460

Scenario 1 P0 17-53/324 34-16/290 50-47/428

4 Satellites P1 18-04/1912 34-22/1953 50-39/1887

Vmax=2016 P2 18-11/956 34-19/842 50-16/913

P3 ? 34-11/1314 50-29/1411

Table 1 present the results for the scenario 1. The stores values
are the computation time and the evaluation of the best constellation
reached during the search. Vmax indicates the best attended value.
The test is made for three sets of relaxed parameters.
Results are satisfying because the best found solution for P1 condition
with 3 satellites is acceptable for both relaxed parameters. In fact, the
value of the best solution is about 95 percent of the best attended
value. We could increase this value with a fine synchronization of the
satellites but this is not the goal of the algorithm, we only want to
know the configuration and global positioning of the satellites.
With 4 satellites, results are better but not concluding (the maximum
is not reached). After a fine analyze, one of the satellites is redundant
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most of the time during the simulation. The three other satellites are
correctly positioned but the forth one doesn’t succeed to find a syn-
chronized place.
The first statement concerning this low level algorithm is that during
the first iterations the algorithm is able to find a value for the most
influence parameters.
In fact, among the six parameters of a satellite, the altitude (a) and
the inclination (i) are very determining for the quality of the solution.
This result is very promising because it allows considering a separated
optimization which could dramatically reduce the time computation.
A second test has been realized with a restarting strategy, ?Table 2
stores the number of iterations to reach the optimum and the value
of the optimum. Results are better than for previous test because the
maximum is reaches with four satellites and reach 98.5 percents with
three satellites.
The restarting strategy seems to efficiently bypass local optimum but
the number of iterations is increasing consequently. For operational use,
we have to take care of this to prevent exponential time consuming.

Table II. Scenario 2 [-70, +70] latitude band coverage with
restarting strategy

Vmax=2016 PSD

a,i a,i, e, w a,i,e,w,W,M

3 Satellites 1 P1 1700/1934 2100/1953 3050/1985

4 Satellites P1 1467/2016 3300/1947 5400/2016

6.3. Metaheuristiques stage validation

To validate this stage, we create two kinds of ODB to ensure the return
of a good constellation after each low level stage. Firstly, we voluntary
choose an aberrant ODB composed of classes containing only one so-
lution. The low level optimization is instantaneous.
Secondly, we built an ODB allowing a configuration containing a good
solution. Corresponding classes allow several orbits and we have to
precisely know the parameters values for the best solution in order to
return it instantaneously.
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We present now an application for navigation space systems. The goal
is to recover the GPS constellation.
The main characteristics of this constellation are the doublet of satel-
lites in each orbital plan and the symmetric distribution of the plane
around the earth. The starting configuration is set to a Walker constel-
lation with 18 satellites, in order to keep the symmetry.
The first result concerns the performances of the constellation and its
design.
Figure 4. presents the constellation design. We remark that a doublet
is formed for each orbit plan. This result confirms the efficiency of such
configuration for triangulation precision. The main difference between
the returned constellation and the GPS constellation is the position
of the doublet which is not symmetric. Global performances are quiet
good because the criterion used to optimize is the availability of the
constellation (that is to say the percentage of time the constellation is
given a sufficient precision). The value of the returned constellation is
about 99.89 percents and the value of the GPS constellation is about
99.999 percents. This values seems very close but the attended percent-
age should be very close to 100% for operational use.
The second result concerns the configuration evaluation. In fact, we

Figure 4. Constellation design

define two ways to evaluate a constellation (a pre evaluation and a
post evaluation). Figure 5. presents the evolution of this two values
for a selected configuration during the high level search progression.
Readers have to remind that the configuration values are linked to
the class value which evolves at each new configuration exploration.
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The expression of these values are given in [13]. We remark that the
distance between the graphic stay small. The pre evaluation seems to
be significant for a coarse estimation of the ability of a configuration
to solve the problem.
Another interesting information concerning this test is that the high

Figure 5. Pre and post configuration

level algorithm only explores between 0.5 and 0.7 percents of the config-
urations. This allows considering a wide complex system optimization
but should be decreased to treat the whole search space (6N parameters
free).

6.4. Global validation

After the independent tests, we are going to evaluate the ability of the
whole algorithm to solve the problem.
The application field is the navigation. We try to recover the GPS
constellation starting from an 18 satellites Walker constellation (same
starting solution as previous test).
The main difference concerns the ODB which is composed of classes
with common altitude and inclination but with free other parameters.
Moreover, the total number of satellites is not limited.
The total number of satellites is 30, which is more than GPS constel-

lation. The repartition is quiet regular but on other orbits than Walker
satellites.
The criterion used has an evaluation of 99.999 for GPS constellation
and 99.956 for the returned constellation.
This value is inferior but quiet good.
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Figure 6. Global optimization results

This seems to indicate that there is another good local optimum with
a different satellite repartition.
We should also note that the GPS constellation is not necessary the
best constellation for the proposed criterion.
On conclusion, the algorithm has been tested for both telecommunica-
tion and navigation systems. It presents satisfying characteristics in a
directed way (precise orbit classes).

7. Operational use

This tool has to be used by engineers to help those designing constel-
lations. The goal is not to deliver a standalone software but to give the
possibility to model a constellation with certain constraints.

7.1. Using the tool as an expert system

According to the validation made in the previous section, the tool
could be very efficient to find a sub-optimal solution. The efficiency
is dependant on the ODB definition which is the way to drive and limit
the search. Experts could use the ODB to introduce heterogeneous con-
straints such as altitude range, number of satellites or orbit inclination.
Experts could rapidly have a solution with a restricting ODB and
so explore different kind of constellation. This first exploration allows
establishing a global design of the constellation (minimum number of
satellite, coarse range of altitude).
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After this, an accurate search could be launched to determine precise
parameters.
This way seems to be the best way to use the design tool.

7.2. Software development

The algorithm has been implemented in a high level computer science
environment. A complete modeling of the system has been made with
the UML language in order to produce a clean conception.
An object oriented language has been used to implement the algorithm
and to develop a user friendly interface allowing to parameter the ODB
and the whole algorithm (number of iterations, thresholds ...), to run
the resolution and to visualize the results.
Figure 7 and Figure 8 present some snapshot of the main part of
the interfaces. The main Window allows to parameter the Strategic
Oscillation, the Tabu Search and the Steepest Descent. It displays the
memory state, the best solution value, the number of ran iterations, the
time spends. It also gives a link to visualize each satellite within the
constellation by three ways: parameters values, 2D (Figure 9-a) and 3D
(Figure 9-b) shape of the orbit. In a complex system, having different

Figure 7. Main windows: algorithm

ways to visualize results (numerical, 2D, 3D, criterion) is important in
order to analyze them.
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a) configuration definition b) ODB Configuration

Figure 8. Sub windows

a) 2D orbit vizualisation

b) 3D Crirerion visualization

Figure 9. Visualization

7.3. How to speed up the search: towards high
performance computing

Even if constellation satellite design is not directly dependant on tools
performances or real time computing (this step is an upstream work
not directly linked to a production context), we have to consider an
operational use case.
Currently the tool is suitable for a quick solution outline or for a time
consuming accurate solution.
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Figure 10. 3D constellation visualization

As previously expressed, the main reasons are the time consuming
evaluation criterion (sometimes several minutes for a single solution
evaluation) due to a simulation process and the combinatorial explo-
ration space engender by the parameters.
Regarding the system, parallelization seems to be the main way to
accelerate this time consuming algorithm. In fact, we could consider
the evaluation of each configuration of the neighborhood on several
processors.
There aren’t many parameters to transfer for each configuration to
treat compared to the number of iterations to explore it. In fact, if we
consider that the ODB and the criterion are loaded on each processor,
only N parameters are necessary to run a configuration exploration.
If we consider the Strategic Oscillation, parameters concerning the low
level algorithm are also necessary to run the exploration (number of
iterations, thresholds ...).
All those parameters cumulate, few octets are necessary and a parallel
calculation is possible over a computer cluster with a distributed mem-
ory. It is not required to invest on a multiprocessor super calculator.
Other considerations, such as pre-calculation, allow considerably reduc-
ing time. In fact, when the criterion is evaluated, a simulation is run
over a long time period and over a wide surface. When changing the
parameters of one satellite, the whole computation is done again. So
for a N satellites constellation, N−1

N percent of the simulation is done
twice. So during the low level stage which is a local search, we spend a
lot of time computing the same values.
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With this last consideration, we could divide the computation time with
a factor between 10 and 20 (for a classical constellation optimization).
With a parallel approach, the gain could be more important.

8. Conclusion and perspectives

8.1. Algorithm performances

At the beginning of the development, we expect a more autonomous
tool to design constellations. But operational considerations and accu-
rate performances constraint us to propose a more interactive tool for
expert designers.
For localized applications (navigation, telecommunications) both low
and high level algorithm present some convincing properties when run
separately. The validation of the integrated algorithm is more prob-
lematic because of main behavior understanding but engage tests give
interesting results.
With this integrated multi stage tool, experts have the possibility to
approach a complex problem by different ways.
On conclusion, the policy we adopt to conceive the algorithm was
to conserve the possibility to reach any kind of solution. There is
no restriction due to the employed algorithm. Nevertheless, we could
precisely guide the search in order to reach a preferred kind of solution
by introducing expert knowledge using the Orbit Data Bas.
The algorithm has a dynamic full duplex interaction between stages
(through memory structures) allowed by the strategic oscillations.
The techniques developed in this paper could be used to any complex
system where reducing the searching space is required to reach an
interesting solution.
But without a good understanding of the dependence between param-
eters and search space, the progression will be blind and not efficiency.

8.2. Extension to other real complex systems

The underlined advantages of this multi-stage algorithm are not specif-
ically adapted to the constellation design problem.
In fact, the algorithm is customizable by many ways.
We do not have the presumption to propose a universal complex sys-
tem optimization algorithm. Not at all. In this section, we only give
indications to select and model problems having close characteristics.
The interaction between the algorithm and the application field (more
precisely the problem to solve) is limited to the definition of ODB and
evaluation function.
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The ODB has been specifically created for the constellation design
problem. As express in previous sections, this is an efficient way to
drive the search and a specific effort has been made to design this
knowledge database.
Such an effort must be done to adapt the ODB to the new challenging
problem.
We have to keep in mind, that the adaptation must conserve the char-
acteristics which make the power of the ODB. That is to say, a way
to intelligently limit the range of each parameter. In other words, each
restriction must be justified with a physical correspondence. An ele-
mentary decomposition of the parameters range into uniform interval
is not interesting and suitable for the algorithm. In fact, if changing
the belonging class means changing the nature of the solution, the
metaheuristic level of the algorithm could be able to extract significant
structures from the explored solutions.
As example, the distribution of nodes in a network is a quiet similar
problem. Likewise, the antenna positioning in cellular networks is close
to current problem ([24],[25]).
We could characterize an antenna (a node) with following parameters:
cost, range (number of interface), bandwidth ...
Each kind of antenna (node) could be translated in terms of classes
having physical signification.
The goal is to find the number of antenna (node), their characteristics
(belonging class) and their position.
Each parameters of a class could be fixed or variable: fixed cost, or cost
depends on bandwidth ...
Some of the parameters could be interpreted as constraints on local-
ization: maximum altitude for an antenna, environment (high voltage
wire proximity ...).
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