BIOMÉCANIQUE 2

Claude HERTOGH, MCU
UFR STAPS
Université Antilles

Cf. www.univ-ag.fr/uag/staps

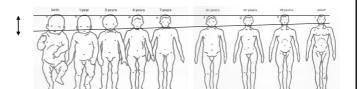
Éléments de mécanique humaine

Caractéristique humaine

Sommet du règne animal ? Forme la + sophistiquée de la vie ?

il y a tjrs un animal qui possède des capacités
> sur une fonction particulière...

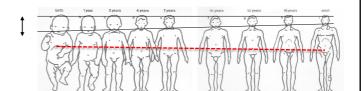
... à l'exception du plan intellectuel


Mais homme = Spécialiste de la non spécialisation...

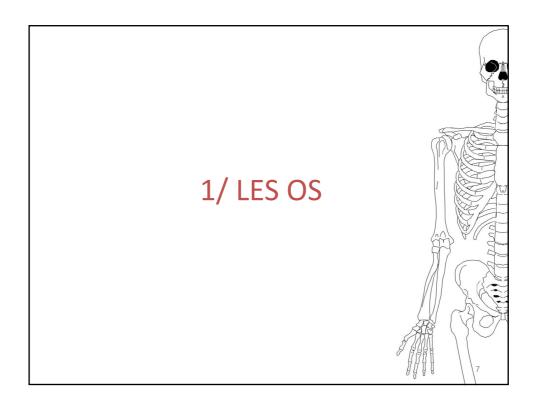
3

Elt de mécanique humaine

Particularités de la machine humaine :


- Pas de plan à disposition!
- Gde variabilité interindividuelle
 - sexecapacités fonctionnelles
 - formescognitives
 - dimensionsmotrices...
 - résistance

Elt de mécanique humaine


Particularités machine humaine :

- Évolution des caractéristiques en f^c du tps (vieillissement) et de l'entraînement...
- Réactivité et adaptation ≠ face aux agressions
- Optimisation liée à l'évolution (CdeG se déplace)

Elts de mécanique humaine "l'homme - machine"

Structure biologique	fonction	Équivalent machine
Squelette	support Protection	mécanisme
articulations, ligaments	Maintenir la cohésion de la structure	Liaisons mécaniques Axes - Courroies
muscles	Stabiliser ou mouvoir le corps	Actionneurs Moteurs
système nerveux	Communiquer, percevoir, décider, commander, contrôler	Automates, contrôleurs, capteurs, ordinateurs
viscères	logistique, énergie	Sources d'énergie

Os: Caractéristiques mécaniques

- 206 os en remaniement permanent (Ostéoblaste : fabriquent l'os (Ca+) Ostéoclaste : détruisent l'os)
- Rôle du squelette :
 - Fonction de soutien, Support leviers, Mvt Le prof d'EPS
 - Protection
 - Forme, silhouette
 - Autres : Cellules du sg

Le prof d'EPS a le pouvoir de déformer le squelette!

• Tissu vivant : vascularisés et innervés (reliés entre eux par X°) donc modulable, réparable mais aussi cassable...

Os: Caractéristiques mécaniques

Croissance due à une membrane recouvrant l'os : le périoste

Timing : Croissance en longueur puis en largeur → les dimensions des leviers changent

Elastique : soumis à une F, il se déforme, puis retrouve sa forme initiale.

(≠ce selon : âge, sexe, mobilisation prolongée)

 Hystérésis parfait = Pas de déformation résiduelle, mais il peut y avoir fatigue du tissu osseux (si sollicitation répétée → retour plus long dans le temps)

Os: Caractéristiques mécaniques

- •Avec l'âge diminution de l'eau (peau, os...)
- → os sec + cassant, rupture après ph. élastique, alors même que les qualités du matériau OS > bcp d'autres matériaux
- Os = + résistant à contrainte exercée rapidement qu'à F prolongée

Os : Caractéristiques mécaniques

- + module de Young (ou d'élasticité) est grand, +le corps est "raide" (peu élastique)
- L'os compact à un module d'élasticité > à l'os spongieux (donc + raide)

os = tissu relativement souple

Acier = $20\ 000\ \text{N/m}^2$, os = $2\ 000\ \text{N/m}^2$, bois: = $1\ 000\ \text{N/m}^2$

- Les contraintes de flexion ou de rotation s'exercent surtout à la périph (os creux) (rappel poutre encastrée)
- Os + muscle = poutre composite (Cf. béton armé)

Os

- Propriétés mécaniques varient selon directions (=Anisotropie)
- Os + résistant à la pression qu'à la traction ou rotation (surtout mbre <)
- Chez l'enfant os + élastique (moins de Ca⁺)
- La direction des travées (lames) osseuses semble augmenter les qualités mécaniques de l'os

Trabécules osseuses De l'os spongieux

Résistance à la rupture ++ dépend de 5 facteurs :
 Section / épaisseur / architecture / configuration ext / qtté sels minéraux

ex : rotule : 198 kg, tibia : 450 kg, fémur : 756 kg

_

Os

FATIGUE DES MATERIAUX: DEFINITION

La **fatigue** désigne l'endommagement d'une pièce sous l'effet d'efforts répétés : Quand un objet est conçue pour résister à un efforts donné, il peut néanmoins se rompre sous l'application répétée des forces inférieures

Ex. : une vis de diamètre 6 mm peut tenir un objet d'une tonne, elle peut en revanche casser si on lui suspend un objet de 100 kg un million de fois de suite

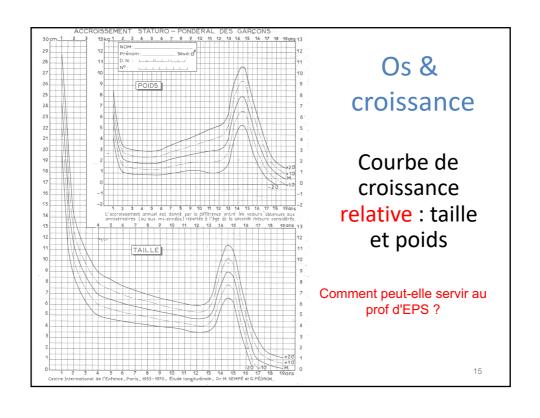
On mesure la Résistance à la fatigue par le nombre possible d'application de la ½ charge nécessaire a sa rupture

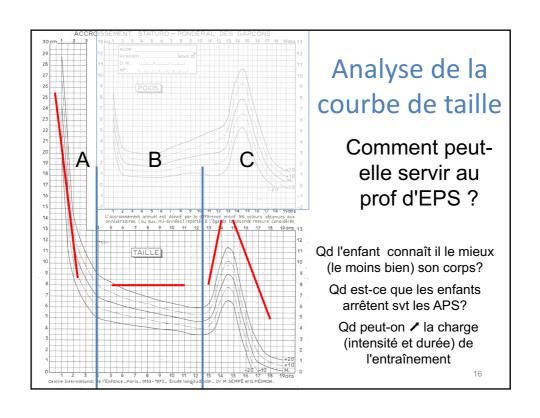
- ACIER → 10⁷ cycles (10 millions de cycles)
- OS → nombre de cycles = 1 à 2.8 milliards

13

Os

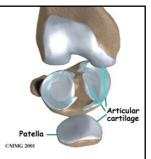
Légèreté


 Os non plein, Teneur en eau augmente poids (squel sec = env. 6/7kg)


Os + muscle = poutre composite (comme le béton armé)

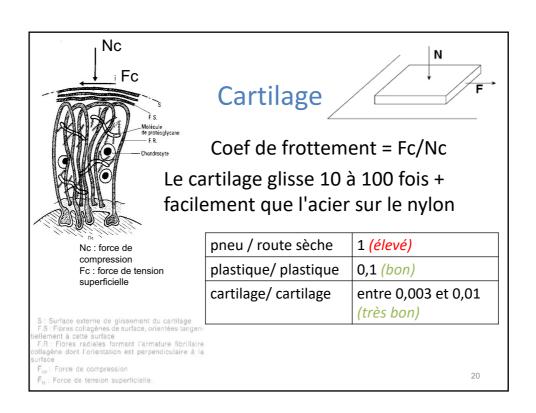
→ bonne résistance à la compression

Variations


- **Sexe** femme : risque → résistance os : ostéoporose post-ménopause (processus hormonal)
- Immobilisation: ∠ caractéristiques mécaniques (os non soumis à G est + élastique Cf. astronautes)
- Malnutrition
- Vascularisation osseuse
- Facteurs héréditaires

âge	aspect fonctionnel	croissance	dev psycho- moteur
ans	articulations &	5 à 8 ans =	myélinisation → acquisition motrice ++
	muscles peu	ralentissement de la	imitation
	développés	croissance	coordination globale
	peu de tonus de	allongement de la	
	soutien	silhouette	
0 ans	hausse du volume	9 à 12 ans	acquisition rapide d'automatisme
	thoracique (volume	allongement des	image du corps précise
	cœur et capacité	membres	disponibilité motrice
	pulmonaire ++)	masse grasse	Attention aux attitudes corporelles (scoliose)
		diminue	les courbure de la col vert s'accentue jusqu'
			à 18 ans
3 ans		filles 13 à 15 ans ou	diminution du contrôle de soi
		bien garçons 14 à 16	Influence des émotions
		ans : croissance	
		déséquilibrée (période pré	détérioration de la mobilité (souplesse)
		pubertaire)	filles 12 à 13 ans, garçon 13 à 14 ans:
			capacité de perf max en endurance
			Attention : pas de charge de longues durée
			surtout colonne vert.
6 ans	rythme cardiaque se	filles 16 à 19 ans ou	économie / efficacité
	ralenti	bien garçons 17 à 19	Apparition de la puissance
	meilleure adaptation	ans : harmonisation	Dév. Des masses musculaires.
	de l'organisme	des proportions	
_			Dév de la résistance
o ans	= adulte	fin de la croissance	= adulte

2/ Cartilage articulaire

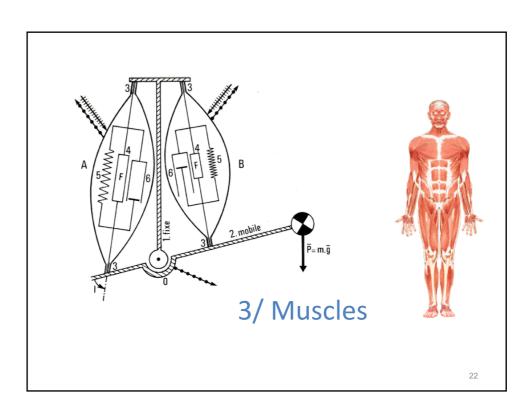

Rôle important :

soutien poids, **lubrification** et **répartition** charges ne possède pas structure vasculaire ou lymphatique

Diffusion et convection, du point de vue mécanique, essentielles pour la nutrition des cellules, l'élimination des déchets et la transformation de la matrice

Cartilage

- Tissu ferme, légèrement dépressible, élastique, surface excessivement lisse
- 75% d'eau: fibres collagène, gel de protéoglycanes hydrophiles (protéine), de chondrocytes (responsables synthèse de la matrice)
- 2 rôles
 - fonction dynamique (+ liq synovial) = →
 Forces de friction
 - fonction statique = transmission, répartition pressions & amortissement contraintes


Cartilage

- Contraintes d'écrasement se transforment en NRJ de rotation
- Présente une élasticité (amortissement), solidité et auto nutrition dues à sa structure moléculaire

Cartilage permet le mvt
= "autonomie motrice de l'être vivant"
(au même titre que "l'autonomie métabolique et mentale")

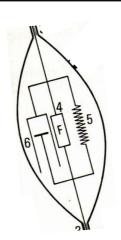
Défaut : Faible capacité de régénération en cas de lésions

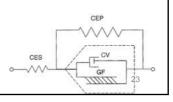
Avantage: l'action → le nourrit

Muscles

Propriétés

(non également réparties)


- Excitabilité
- Définition?
- Contractilité
 - Elasticité
 - Tonicité


Modèle musculaire :

- (5) Composante élastique passive
 Tissu conjonctif du corps musculaire
- (4) Composante contractile

 Fibres musculaires contractiles génératrice de F
- (6) Composante visqueuse

 Transfert liquidien du muscle = amortisseur visqueux

Muscles

- Formes
 - Fusiforme / penné / segmenté / large
- Section physiologique \rightarrow F_{max}
 - Définition
- W dans 3 types de leviers
 - Cf. Définition suite

LES LEVIERS (Rappel)

Déf. : Barre rigide mobile autour d'un axe et soumis à 2 forces qui tendent à le faire tourner en sens opposé

Légende LEVIER

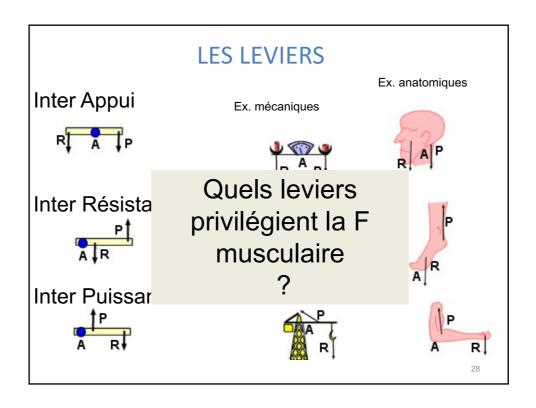
A = Axe de rotation, point d'appui

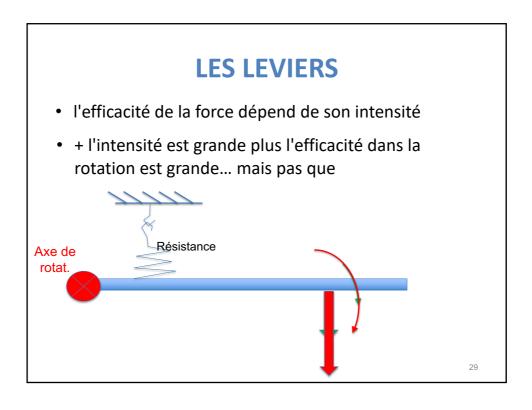
R = Résistance (antagonistes, adversaire, pesanteur...)

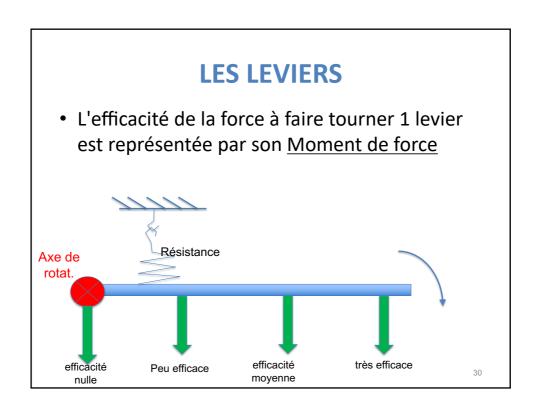
P = Puissance musculaire (force M)

25

Accéder à mes présentations, PDF, polycop, liens...


Flasher le QR code puis suivre menu et

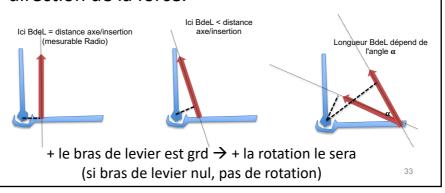




http://calamar.univ-ag.fr/uag/staps/cours/covidCH

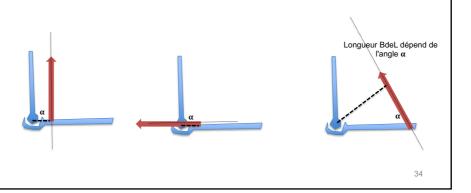
LES LEVIERS (Rappel) Déf.: Barre rigide mobile autour d'un axe et soumis à 2 forces qui tendent à le faire tourner en sens opposé Légende A = Axe de rotation, point d'appui R = Résistance (antagonistes, adversaire, pesanteur...) P = Puissance musculaire (force M)

 Pour une même intensité, l'efficacité de la force dépend de la distance à l'axe (+ elle est grande plus l'efficacité est grande)


LES LEVIERS

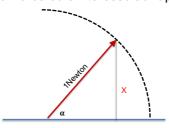
- Une force fait tourner un levier
- <u>Notion de Moment de force</u> (N.m) : produit de l'intensité de la force par son bras de levier

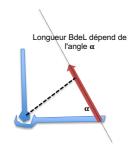
$$M_F$$
= Fxd_f
F: intensité (N), d_f : bras de levier (m)


Moment d'une force représente son efficacité à générer une rotation (il peut être nul si $d_f=0$)

• <u>Notion de bras de levier</u>: distance la + courte entre axe et direction de la force, c-à-d : la perpendiculaire abaissée de l'axe sur la direction de la force.

LES LEVIERS

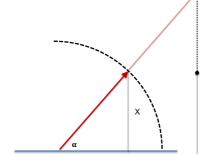

- Si $\alpha = 90^{\circ}$ alors bras de levier = distance (axe-insertion) x1
- Si $\alpha = 0^{\circ}$ alors bras de levier = distance (axe-insertion) x0
- Si α < 90° alors bras de levier = distance (axe-insertion) xX?



- Si $\alpha = 90^{\circ}$ alors bras de levier = distance (axe-insertion) x1
- Si $\alpha = 0^{\circ}$ alors bras de levier = distance (axe-insertion) x0
- Si α < 90° alors bras de levier = distance (axe-insertion) xX?

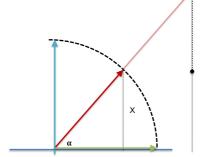
Quelle est la valeur de X?

Pour qu'il ne dépende que de l'angle et pas de la Force ou s'intéresse au rapport x/F



35

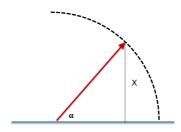
Comment connaître la valeur X


- A chaque fois que la force double, X double...
- On divise X par la force pour avoir un indice qui ne dépende pas de l'intensité de la force mais seulement de l'angle

En effet 2X/2F = X/F

Comment connaître la valeur X

- A chaque fois que la force double, X double...
- On divise X par la force pour avoir un indice qui ne dépende pas de l'intensité de la force mais seulement de l'angle

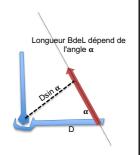

Si angle = 0° Alors X = 0

Si angle = 90°
Alors X se confond a force

37

Comment connaître la valeur X

- A chaque fois que la force double, X double...
- On divise X par la force pour avoir un indice qui ne dépende pas de l'intensité de la force mais seulement de l'angle

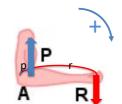

Par convention on appel le rapport :

- coté op/hypo = sin α
- coté adj/hypo = cosα

Moment de F : M_F = FxBdL ou

 M_F = FxDxsin α

Remarque on a bien $\sin \alpha = 90^{\circ} \sin \alpha = 1 \rightarrow \mathsf{MF=Fxd}$ $\sin \alpha = 0^{\circ} \sin \alpha = 0 \rightarrow \mathsf{MF=0}$

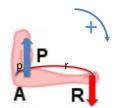

39

Liste des rapports les + courants

angle	0°	30°	45°	60°	90°
cote op/hypo	0	1	2	3	4
cote adj/hypo	4	3	2	1	0
ovalo	0°	30°	45°	60°	90°
angle	U	30	45	60	90
cote op/hypo	۷0	٧1	٧2	√3	√4
cote adj/hypo	√4	√3	√2	٧1	٧0
angle	0°	30°	45°	60°	90°
cote op/hypo	ν0 _{/2}	٧1 _{/2}	√2 _{/2}	٧3 _{/2}	√4 _{/2}
cote adj/hypo	√ 4 _{/2}	٧3 _{/2}	٧2 _{/2}	V1 _{/2}	٧0 _{/2}
angle	0°	30°	45°	60°	90°
$sin \alpha$	0	1/2	√2 _{/2}	√3 _{/2}	1
cosα	1	٧3 _{/2}	٧2 _{/2}	1/2	0
$\sqrt{2} = 1.414$ et $\sqrt{3} = 1.732$					

A l'équilibre pas de rotation donc la somme de moment est nulle :

- ΣM=0
- M_P+M_R=0
- (-Pp)+(+Rr)=0
- Pp=Rr
- P=r/p R

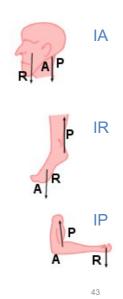

Si R = 10kg a 30cm et P est à 2cm alors P doit développer à l'équilibre: P= 0,3/0,02 x 100 = 1500N(soit 150 kiloforce)

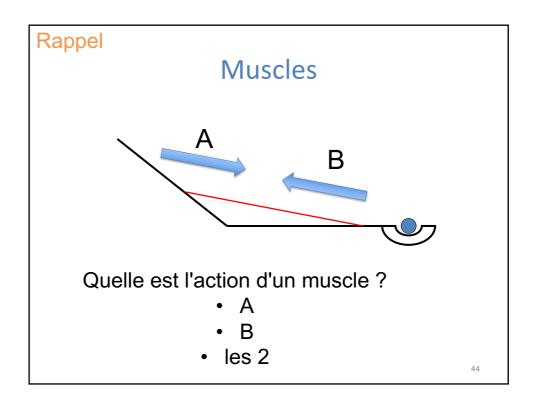
44

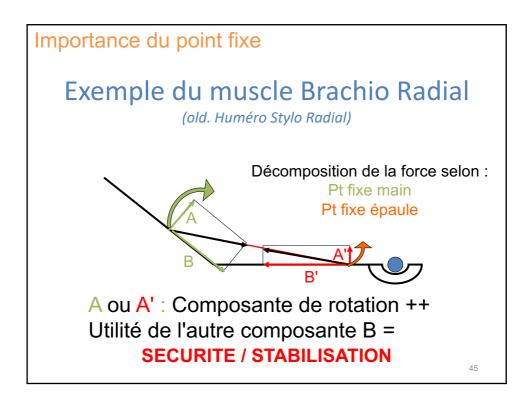
LES LEVIERS

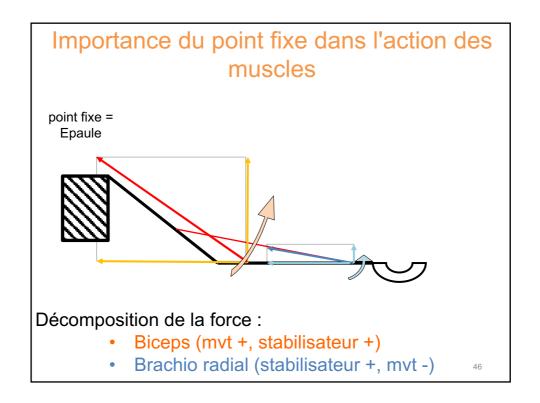
A l'équilibre pas de rotation donc la somme de moment est nulle :

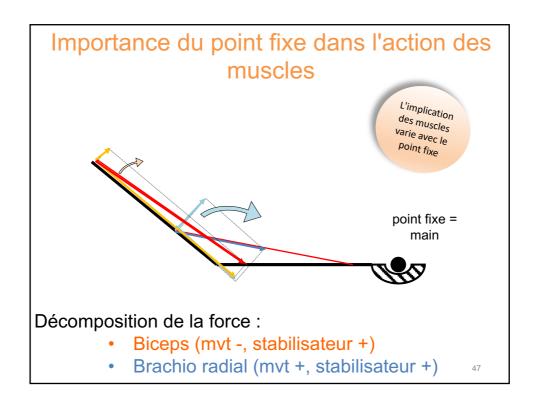
- ΣM=0
- M_P+M_R=0
- (-Pp)+(+Rr)=0
- Pp=Rr
- P=r/p R

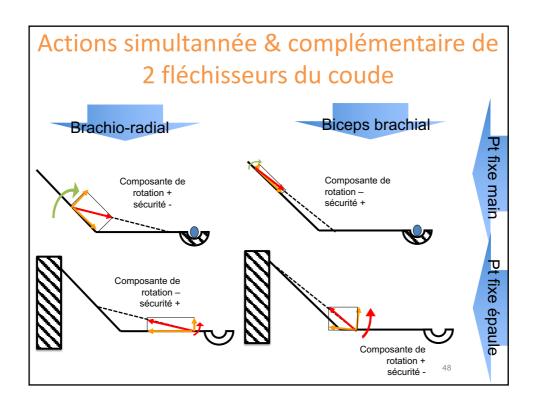

Comment est r/p selon le levier?

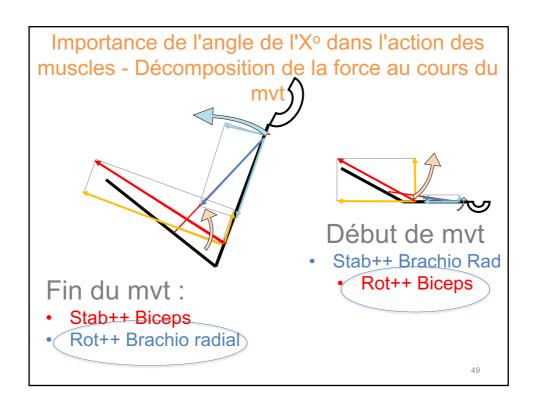

- Quels leviers sont les plus fréquents dans l'appareil locom.?
- Quels formes de muscles = plus fréquents dans l'ap. locom.?

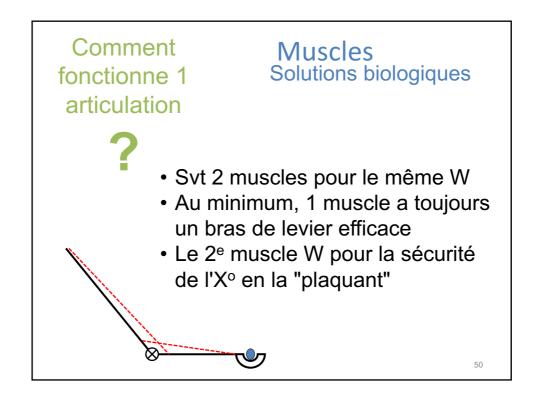

Fusiforme Vs penné

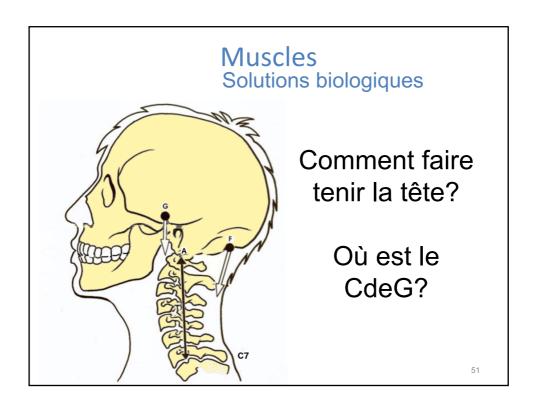

Réflexion sur l'assoc. ≠ leviers & ≠ formes des muscles

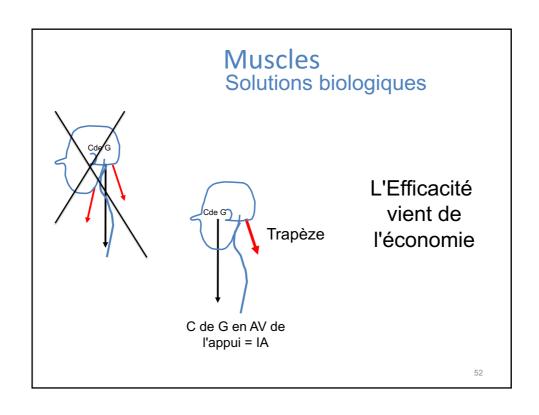

→ W de TD

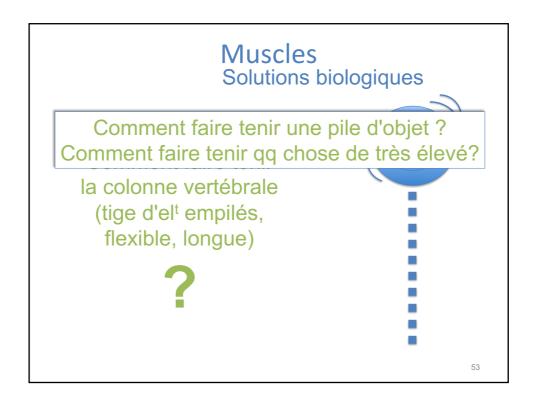


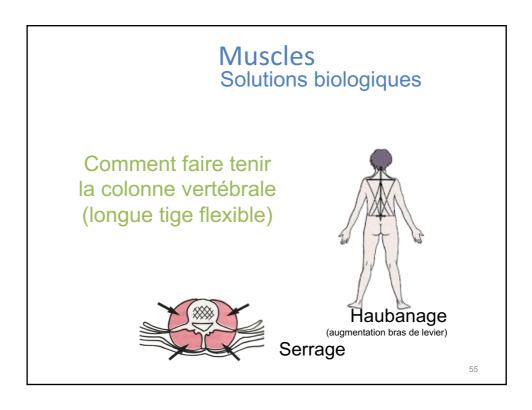






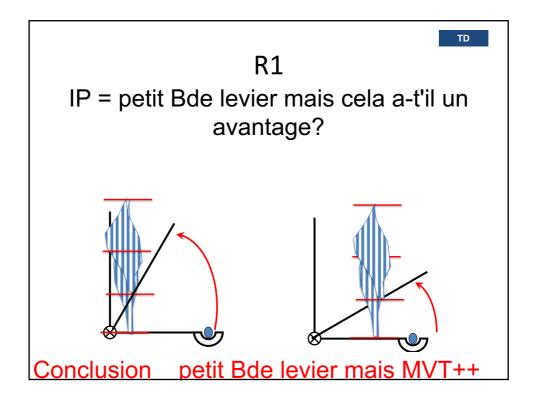






Muscles

TD

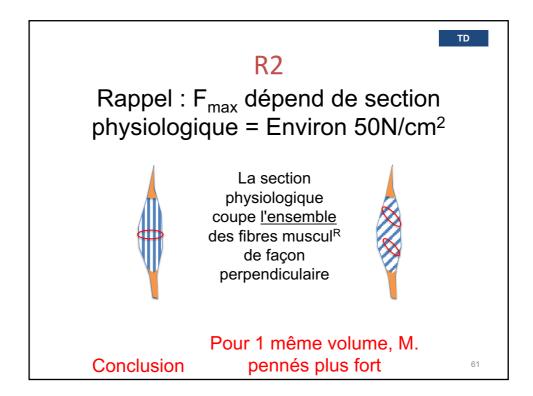

Q1/ Quels leviers sont les plus fréquents dans l'appareil locom.?

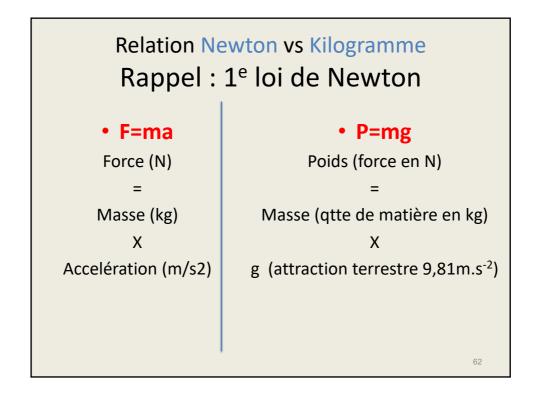
R1/ IP = InterPuissant Q2/ Quels formes de muscles = plus fréquents dans l'ap. locom.?

Fusiforme Vs penné

Réflexion sur l'assoc. ≠ leviers & ≠ formes des muscles

Tableau noir	




Muscles

TD

 Leviers IP désavantage la puissance mais MVT ++ (Leviers IR avantage la puissance mais MVT +-)

muscles fusiformes VS muscles pennés

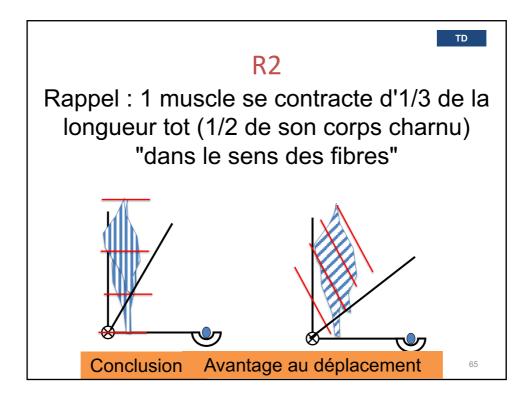


Tableau noir		

Or dans l'app. Locomoteur nbre M fusiformes > nbre M pénés

Encore une fois la solution biologique ne favorise pas la force & la puissance ...

Muscles

TD

- Muscle fusiforme désavantagé (F_{max} -)
- Muscle penné avantagé (F_{max} +)
- Leviers IP désavantage la puissance
- Leviers IR avantage la puissance

MAIS

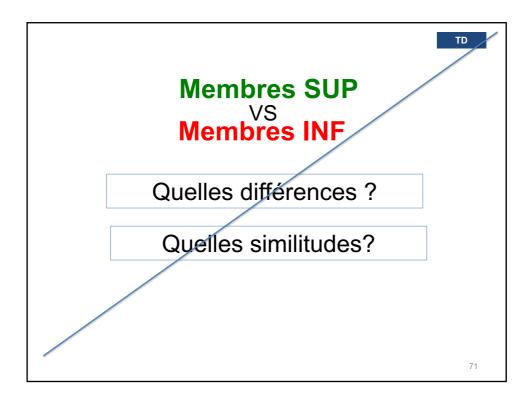
Appareil locomoteur svt muscles fusiformes travaillant à la manière d'un levier IP.

Les solutions biologiques favorisent tjrs Mvt & amplitude face à force & puissance

> la fonction 1^{ière} de l'appareil locomoteur est donc le MVT

Tous les muscles ne sont pas dédiés au myt

Muscles


Muscles du déplacement du maintien

Quelles différences?

Quelles similitudes?

Muscles	du déplacement	du maintien
FORME	Travail étudiants	sous forme TD
ΟÙ		
ENTRAÎNE		
TYPOLOGIE		
LEVIER		

Muscles	du déplacement	du maintien
FORME	Longs, fins, fusiformes. fibres = direction muscle → déplacement	Courts plats compacts svt penné. fibres ≠ direction muscle → force
ΟÙ	Extrémités, squel distal = mbres	Squ proximal, tronc, gout. vertébrale, (fessiers, abdo) posture
ENTRAÎNE	Contractions dynamiques : efforts max. à vit ++	Efforts sous max. de longue durée, nbreuses répétitions
TYPOLOGIE	F élastiques, peu toniq. fort ^t et rapidem ^t contractile, mais fatigable F blanches (FT) rapides	F peu élastiques, très toniques. G ^{de} résistance à la fatigue F. rouges (ST) lentes
LEVIER	ds IP privilégient vitesse & déplacem ^t à force	ds IA & IR privilégient force à vitesse & déplacement

Membres SUP
VS
Membres INF

Quelles différences ?

Quelles similitudes?