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Overview

• Basic equations
• Nonlinear equations
• Dispersive equations

• Properties of the COULWAVE model
• Boundary conditions:

• Open boundaries
• Wetting/drying along the coast line

• Wave breaking
• Bottom friction

• Examples
• Breaking and non-breaking wave runup
• Simulation using realistic wave fields and bathymetry
• Ship waves
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Equations for inviscid, incompressible flow
• Continuity equation:

∇ · u =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0

• Euler equation:

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + g

• Dynamic and kinematic boundary conditions:

p = pa(x , y , t), at z = η(x , y , t)

w =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
, at z = η(x , y , t)

w = u
∂h
∂x

+ v
∂h
∂y
, at z = −h(x , y)
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Linear wave theory

• Use linearized equations and
assume a wave solution:

η = ηmax sin(kx − ωt)

• Dispersion relation for linear
wave:

ω2 = gk tanh(kh)

• Phase velocity:

c =
ω

k
=
(g

k
tanh(kh)

)1/2
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Shallow water approximation

• For kh→ 0
• Dispersion relation:

ω2 ≈ gk2h

• Phase speed:

c =
√

gh

• Long waves are non-dispersive.
• The wave energy is transported with the individual waves,

i.e. there is little or no exchange of wave energy between
waves in a wave train propagating in shallow water.
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Scales for surface gravity waves

Acceleration scale:
g - acceleration of gravity

Length scales:
λ - wave length, h - depth, A - amplitude/elevation

Time scale:
Usually constructed from length and acceleration scales, e.g.
t = λ/

√
gh
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Approximations for shallow water flow

Shallow water, long wave theory: ε = h
λ � 1

Weakly non-linear theory: µ = A
h , A

λ � 1

Ursell number: Ur = ε
µ2 = Aλ2

h3

• Linear theory: Ur � 1
• Weakly dispersive, weakly non-linear waves: Ur ≈ 1
• Non-dispersive, finite amplitude waves: Ur � 1

Comparison of length scales indicates if waves are non-linear
or dispersive, or if both effects should be included.
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Shallow water theory

2D case discussed for simplicity
U, W - characteristic horizontal and vertical velocities

∂u
∂x

+
∂w
∂z

= 0⇒ W
h
∼ U
λ
⇒ W

U
∼ h
λ
� 1



Approximations Equations and numerical models COULWAVE

Strategies for numerical simulations

Numerical solution of Euler equations is possible, but at high
computational cost.
- Restrict computational domain (or resolution)

Shallow water approximation:
- Reduce 3D equations to 2D equations by integrating over
depth.
- Derive governing equations by expanding u in terms of z.
Several different formulations may be derived from the primitive
equations.
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Korteweg-de Vries equation

Simplest form of weakly nonlinear, weakly dispersive equation:

∂η

∂t
+

(
1 +

3
2
η

)
∂η

∂x
+

1
6
∂3η

∂x3 = 0

Compare with properties for the nonlinear transport equation

∂η

∂t
+

(
1 +

3
2
η

)
∂η

∂x
= 0

and the linear weakly dispersive equation

∂η

∂t
+
∂η

∂x
+

1
6
∂3η

∂x3 = 0
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Korteweg-de Vries equation (Cont.)

Evolution of an initial disturbance η = A cosh−2

[√
3A
2

x

]
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fKdV and KP equations

Forced KdV (fKdV) equation (1D propagation)

∂η

∂t
+

(
1 +

3
2
η

)
∂η

∂t
+

1
6
∂3η

∂x3 =
1
2
∂p
∂x

Kadomtsev-Petviashvili (KP) equation (2D propagation)

∂

∂x

[
∂η

∂t
+

(
1 +

3
2
η

)
∂η

∂t
+

1
6
∂3η

∂x3

]
− 1

2
∂2η

∂y2 =
1
2
∂2p
∂x2

Derived from KdV equation by relaxing 1D requirement.
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Boussinesq equations

• Formulate equations in terms of depth averaged velocity ū,
where ∇H = (∂/∂x , ∂/∂y).

• Continuity equation:

∂η

∂t
+∇H · [(h + η)ū] = 0

• Momentum equation:

∂ū
∂t

+ (ū · ∇H)ū = −∇Hη −∇Hpa +
1
3

h2∇H∇H ·
(
∂ū
∂t

)
• Formulations with depth variation include ∇Hh terms.
• Higher order formulations include dispersive terms with

nonlinear corrections.
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Dispersion relation for long wave equations

Linear: c =
√

(g/k) tanh(kh)
Boussinesq: Classical Boussinesq formulation
Nwogu: Improved Boussinesq formulation
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Properties of long wave equations

KdV and KP equations:
+ Closed form (explicit) solutions exist for solitary and

periodic waves.
- Restricted to unidirectional (KdV) or narrow angle (KP) of

wave propagation.
- Poor dispersion relation for intermediate water depth.

Boussinesq equations:
- No known closed form solutions.
+ No preferred direction of wave propagation.
+ Improved formulation with reasonable dispersion relation

up to kh ≈ π.
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The COULWAVE model

• COULWAVE: Cornell University Long Wave model
http://ceprofs.tamu.edu/plynett/COULWAVE/

• Boussinesq type model equations
• High order predictor-corrector method (Adams-Bashforth

+ Adams-Moulton) for time stepping
• Spatial derivatives approximated by finite differences
• Equations discretized on a uniform, quadrilateral grid
• Depth a function of space and time h = h(x, t), which

allows simulation of underwater landslide

• FUNWAVE: Long wave model similar to COULWAVE
http://chinacat.coastal.udel.edu/˜kirby/
programs/funwave/funwave.html
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Continuity equation

1
ε

∂h
∂t

+
∂η

∂t
+∇ · [(h + εη)ū]

− µ2∇ ·
{[

h3 + ε3η3

6
− (h + εη)z2

α

2

]
∇S

−
[

h2 − ε2η2

2
+ (h + εη)zα

]
∇T

}
= O(µ4)

(1)

where
S = ∇ · ū , T = ∇ · (hū) +

1
ε

∂h
∂t

and zα is a reference depth, usually zα = −0.531h
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Momentum equation

∂ū
∂t

+ εū · ∇ū +∇η +∇pa + µ2 ∂

∂t

{
z2
α

2
∇S + zα∇T

}
+ εµ2

[
(ū · ∇zα)(zα∇S +∇T ) + zα∇(ū · ∇T ) +

z2
α

2
∇(ū · ∇S)

]
+ εµ2

[
T∇T −∇

(
η
∂T
∂t

)]
+ ε2µ2∇

(
ηST − η2

2
∂S
∂t
− ηū · ∇T

)
+ ε3µ2∇

[
η2

2

(
S2 − ū · ∇S

)]
= O(µ4)

(2)
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Boundary conditions

• Open boundaries: Flow Relaxation Zones (Sponge Layer)
• Multiply ū by exponentially decaying function near open

boundaries.

• Closed boundaries: Full reflection of waves approaching
the boundary

• Wet-dry boundary: Moving boundary at the shore line
• Linear extrapolation of water phase into dry region
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Example: Carrier-Greenspan solution
• Carrier-Greenspan solution for runup and rundown on a

plane beach
• Wave height 0.006 m, period 10 s, depth 0.5 m, slope 1:25
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Wave breaking

• Wave breaking model after Kennedy et al. (2000)1

• Add an eddy viscosity term to the momentum equation.

∂ū
∂t

+εū·∇H ū+∇Hη+∇Hpa−
1
3
µ2h2∇H∇H ·

(
∂ū
∂t

)
−Rb(ν) = O(µ4)

• Eddy viscosity: ν = Bδ2
b(h + η)ηt

δb - nondimensional mixing length, usually 0.9 < δb < 1.5

1J. Waterway, Port, Coastal, and Ocean Eng. (39), 2000
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Wave breaking (cont.)

• Breaking occurs when ηt > η∗t

B =


1 , ηt ≥ 2η∗t

ηt/η
∗
t − 1 , η∗t ≤ ηt < 2η∗t

0 , ηt < η∗t

• Once triggered, η∗t decreases with time from η
∗(I)
t to η∗(F )

t

η∗t =

 η
∗(I)
t +

t − t0
T ∗ (η

∗(F )
t − η∗(I)t ) , 0 ≤ (t − t0) < T ∗

η
∗(F )
t , (t − t0) ≥ T ∗
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Example: Waves breaking on a plane beach
• Regular waves breaking on a beach
• Wave height 0.036 m, depth 0.36 m, slope 1:34.26
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Bottom friction

• Bottom friction formulations:
• Standard quadratic formulation

R = CFRū|ū|

• Convolution integral formulation

R = CFR

∫ t

0

∇H · ū√
t − τ

dτ
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Bottom friction: Standard formulation

• Boussinesq equations with standard bottom friction
formulation
Continuity equation:

∂η

∂t
+∇H · [(h + εη)ū] = O(µ4)

Momentum equation:

∂ū
∂t

+ εū · ∇H ū +∇Hη +∇Hpa

−1
3
µ2h2∇H∇H ·

(
∂ū
∂t

)
+ CFRū|ū| = O(µ4)



Approximations Equations and numerical models COULWAVE

Bottom friction: Convolution integral formulation

• Viscous effects can be important near solid boundaries.
• Boussinesq equations with a bottom friction derived from

boundary layer analysis (Liu and Orfila2):

∂η

∂t
+∇H · [(h + εη)ū]− δ

µ
√
π

∫ t

0

∇H · ū√
t − τ

dτ = O(µ4)

∂ū
∂t

+ εū · ∇H ū +∇Hη +∇Hpa −
1
3
µ2h2∇H∇H ·

(
∂ū
∂t

)
= O(µ4)

δ2 =
ν

λ
√

gh
, O(δ) ≈ O(µ4) ≈ O(ε2)

2J. Fluid Mech.(2004), vol. 520
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Approximation of convolution integral

• Large computational cost for computing the exact
convolution integral.

• We can estimate the value of the convolution integral by∫ t

t−t∗

∇H · ū√
t − τ

dτ + CRR(t − t∗)

where t∗ is the truncation time, R(t − t∗) is a time
dependent residual term, and CR is the residual coefficient.
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Approximation of convolution integral
• Large computational cost for computing the exact

convolution integral.
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Example: Complex topographies

• Simulating irregular wave train in Wiamea Bay, Hawaii
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Example: Wash waves from high speed vessels

HSS “Stena Discovery”
Top Speed:

40 knots (= 20.6 m/s)
Dimensions:

Length: 121.75 m
Width: 40.00 m
Draft: 4.80 m

• Waves from high speed vessels:
• Long wave lengths and wave

periods.
• Large wave energy.
• Qualitatively different from

waves generated by
conventional ships.

• Potentially dangerous for people
on the shore or in small boats.

• May damage structures at the
shore or moored vessels.

• May increase erosion and disturb
marine habitats.
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Waves generated by a pressure disturbance
• Pressure included through

dynamic boundary condition.
Consistent with primitive
equations.

• Simple to implement.
• Difficult to represent specific

hull shapes.
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Ship waves in Tallinn Bay

• Basin of about 10 km x 20
km

• Ship traffic follows NW -
SE underwater valley, with
depth ranging from 10 m to
90 m.

• Daily crossings (ingoing or
outgoing)

• 22 HSC/Catamaran
• 8-10 Hydrofoil

• A natural laboratory for the
study of long waves.

• Also relevant for tsunami
research.



Approximations Equations and numerical models COULWAVE

Ship waves in Tallinn Bay

• Basin of about 10 km x 20
km

• Ship traffic follows NW -
SE underwater valley, with
depth ranging from 10 m to
90 m.

• Daily crossings (ingoing or
outgoing)

• 22 HSC/Catamaran
• 8-10 Hydrofoil

• A natural laboratory for the
study of long waves.

• Also relevant for tsunami
research.



Approximations Equations and numerical models COULWAVE

Ship waves in Tallinn Bay

• Basin of about 10 km x 20
km

• Ship traffic follows NW -
SE underwater valley, with
depth ranging from 10 m to
90 m.

• Daily crossings (ingoing or
outgoing)

• 22 HSC/Catamaran
• 8-10 Hydrofoil

• A natural laboratory for the
study of long waves.

• Also relevant for tsunami
research.



Approximations Equations and numerical models COULWAVE

Summary

• Long wave equations are useful for numerical simulations.
• Several different long wave equations formulated for

computation of ship waves.
• KdV and KP equations preferable for analysis
• Boussinesq equations preferable for numerical simulations

• The COULWAVE model solves Boussineq-type equations,
and includes several useful features:

• Open boundary conditions
• Wetting/drying in coastal zone
• Wave breaking model
• Bottom friction models

• COULWAVE model can simulate long wave phenomena on
small and large scales: tsunamies, storm surges, ship
waves
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