

Universite des Antilles et de la Guyane, Guadeloupe

Ahmet Yalciner

Middle East Technical University, Turkey

DE LA GUYANE

Andrey Zaitsev, Anton Chernov, Tatiana Talipova

Institute of Applied Physics, Russia

The 1775 Earthquake in Portugal

The Great Lisbon earthquake has the largest

documented felt

Tsunami in Lisbon

The 1775 Tsunami in Europe

Location	Coordinates	Wave height (m)	Travel time (min) and estimated error				
Portuguese west coast							
Porto	8.18° W,41.15° N	1	_				
Figueira da Foz	8.88° W,40.14° N	_	45-50				
Lisboa (Oeiras)	9.08° W,38.73° N	5	25 (estimated error±10)				
Cabo S Vicente	8.99° W,37.00° N	> 10	16 (estimated error±7)				
Gulf of Cadiz							
Cadiz	6.30° W,36.05° N	15	78 (estimated error±15)				
Huelva	6.93° W,37.25° N	_	45 (estimated error±10)				
Ceuta	5.32° W,35.88° N	2	_				
Gibraltar	5.35° W,36.15° N	2	_				
Madeira Islands							
Madeira	16.88° W,32.63° N	4	90 (estimated error±15)				
Porto Santo	16.16° W,33.06° N	—	60 (estimated error±15)				
Cornwall (UK)							
Penzance	5.53° W,51.52° N	2	315				
Newlyn	15.56° W,50.10° N	_	279				
Plymouth	4.15° W,50.31° N	—	390				
Morocco							
Safi	9.33° W,32.30° N	—	26–34 (estimated error±20)				

1755 tsunami in Lesser Antilles

"At St. Martin, the sea retired so far that a sloop, attached to its anchor in 15 feet [4.6 m] of water, was laid dry on her broadside.

At **Martinique** and most of the **French Islands**, it overflowed the low land, and returned quickly to its former boundaries. in that **remarkable flux and reflux of the sea**, some places were left dry on approximately a mile

In the West Indies, this extraordinary motion of the sea was observed 6 hours after the first shock was felt at Lisbon.

1755 tsunami

Tsunami Travel Time (Gusiakov)

6-7 hr to Lesser Antilles

MODELING THE 1755 LISBON TSUNAMI

Charles L. Mader

CALCULATED DEEP WATER WAVE HEIGHTS FOR 1755 LISBON TSUNAMI

T JUNE T

Science Tsunami Hazards 19 No. 2 (2001)

			Maximum	Minimum	L
No	Depth	Location	Amplitude	Amplitude	•
	Meters		Meters	Meters	
1	953	Off Lisbon	+20.	-20.	
2	4747	East of Saba	+2.5	-3.2	
3	825	East of Saba	+5.	-4.	
4	3446	North of San Juan	+2.	-3.5	
5	783	East of Miami	+2.	-3.5	
6	2922	East of Washington	+2.	-3.5	
7	178	South West of England	+6.	-9.	
8	4574	West of Lisbon	+9.	-13.	
9	3868	West of Lagos	+7.	-11.	SWAN - COde
10	3923	West of Gibraltar	+5.	-13.	
11	4376	West of Gibraltar	+10.	-13.	
12	1717	West of Casablanca	+15.	-15.	
13	3314	West of Source	+7.	-8.	

Natural Hazards and Earth System Sciences (2003) 3: 333-340 © European Geosciences Union 2003

New study of the 1755 earthquake source based on multi-channel seismic survey data and tsunami modeling

M. A. Baptista^{1, 2}, J. M. Miranda², F. Chierici^{3, 4}, and N. Zitellini³

"At St. Martin, the sea retired so far that a sloop, attached to its anchor in 4.6 m of water, was laid dry on her broadside.

Recently, Morton et al (2006) found the probable geological evidence of the 1755 tsunami on the east coast of Grande-Terre (Guadeloupe) at Anse Ste. Marguerite and Anse Maurice on a height of 2-3 m

At Martinique, it overflowed the low land, and returned quickly to former boundaries. some places were left dry on approximately a mile (1.8 m)

Rupture parameters for 3 different source alternatives used in our study

Source	I/II/III	
Focal Depth (km)	22	
Fault Length (km)	180	
Fault Width (km)	210	
Slip Dislocation (m)	19	
Dip Angle (deg)	15	
Rake Angle (deg)	100	
Strike Angle (deg. CW)	105/80/55	
Maximum Positive Amplitude (m)	8.14	
Minimum Negative Amplitude (m)	-2.66	

Tsunami Sources (Okada Solution)

Three alternatives

Shallow Water Theory

$$\frac{\partial M}{\partial t} + \frac{1}{R\cos\dot{e}} \frac{\partial}{\partial\ddot{e}} \left(\frac{M^2}{D}\right) + \frac{1}{R\cos\dot{e}} \frac{\partial}{\partial\dot{e}} \left(\frac{MN\cos\dot{e}}{D}\right) + \frac{gD}{R\cos\dot{e}} \frac{\partial\varsigma}{\partial\ddot{e}} = fN$$

$$\frac{\partial N}{\partial t} + \frac{1}{R\cos\dot{e}} \frac{\partial}{\partial\ddot{e}} \left(\frac{MN}{D}\right) + \frac{1}{R\cos\dot{e}} \frac{\partial}{\partial\dot{e}} \left(\frac{N^2\cos\dot{e}}{D}\right) + \frac{gD}{R} \frac{\partial\varsigma}{\partial\dot{e}} = -fM$$

$$\frac{\partial \mathbf{c}}{\partial t} + \frac{1}{R\cos \hat{\mathbf{e}}} \left[\frac{\partial M}{\partial \ddot{\mathbf{e}}} + \frac{\partial}{\partial \dot{\mathbf{e}}} (N\cos \hat{\mathbf{e}}) \right] = 0$$

h is the water surface displacement, *M* and *N* are components of water discharge fluxes D = h(x,y) + h is the total water depth

Numerical Code NAMI DANCE

NAMI DANCE was tested, validated and verified together with other internationally accredited tsunami computational tools (such as MOST, TUNAMI N2, COMCOT) in the Project acronymed TRANSFER (Tsunami Risk And Strategies for European Region) funded by the European Commission.

http://namidance.ce.metu.edu.tr

Domain

1 min (*GEBCO Digital Atlas, British Oceanographic Data Centre*)

Full reflection on land; free passage on open boundaries

Tsunami travel time in minutes (Source Alternative I)

Exceeding 15 cm of uplift or subsidence

Distribution of amplitudes of tsunami waves in Atlantics

The main conclusion from the simulations is that in the case of tsunami generated in the vicinity of the Portuguese coast, the tsunami energy is directed towards Brazilian and Florida coasts and the region near Lesser Antiles remains less affected.

Similar results have recently been obtained by Lovholt et al (2008), who studied tsunami source located near the Canary Islands, and it demonstrates similar characteristics of tsunami propagation in the Atlantics.

Computed Wave Amplitudes at north of Guadeloupe are 40 - 50 cm (wave height is approximately 1 m).

Runup ratio for the tsunami is 2-3

Tsunami runup height can reach 1 – 1.5 m

Distribution of tsunami amplitudes along northern and north-eastern coasts of Guadeloupe

Red points - locations where tsunami amplitude exceeds 1m

Point des Chateaux, 2.17 m; Petit-Canal, 1.42 m Pointe à Bacchus, near Petit-Bourg, 0.95 m

Martinique

Red points - locations where tsunami amplitude exceeds 1m

1.5 m in Bain du Simon;
1.4 m near Sainte Marie;
1.14 m in Pointe de la Batterie;
1.12 m in Sainte-Anne;
1 m in La Trinité and Pointe Banane.

Distribution of wave amplitude along eastern coast of **Martinique**

Conclusions:

The 1755 transatlantic tsunami is modeled by using three similar seismic sources of different strike angles

The rupture parameters suggested by Gutscher et al. (2006) are used as input

Tsunami energy is divided into two parts: (Florida and the Bahamas) and Brazil.

Pointe des Chateaux, east of Guadeloupe, amplitude - 2.17 m

Bain du Simon, Martinique – 1.5 m

Observations: Guadeloupe 2-3 m, Martinique – 1.8 m