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Waves induced by high-speed 
ferries

Outline

• Runup of symmetric long waves on a 
beach: influence of the wave shape

• Runup of asymmetric long waves on a 
beach: influence of the wave steepness 

• Runup on the beach of special profile 
(“nonreflecting” beach): traveling wave 
solutions
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26 May 1983
Japan Sea

(Shuto, 1985)

Tsunami Wave Tsunami Wave 
ShapesShapes

at at 
Japanese CoastJapanese Coast

Nonlinear Shallow Water TheoryNonlinear Shallow Water Theory
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Hodograph Transformation
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(Carrier & Greenspan, 1958)

Explicit Solution for Moving Shoreline 
if Incident Wave is given Far from Shoreline 
where it is Linear Pelinovsky & Mazova, 1992

x(t)x(t)
r(t)r(t)
u(t)u(t)

Nonlinear Coordinates 
and velocity

of moving shoreline
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First Step – Solution of Linear Equations
For Wave Transformation on a Beach

x=0x=0
R(t)R(t)
U(t)U(t)

Linear Coordinates 
and velocity

of non-moving shoreline
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Incident Wave

Second Step – “Nonlinear” Moving Shoreline

Linear Coordinates 
and velocity

of non-moving shoreline

x=0, R(t), U(t)x=0, R(t), U(t)
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Nonlinear Coordinates 
and velocity

of moving shoreline

x(t), r(t), u(t)x(t), r(t), u(t)
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Motivation

One-scale wave shapes
are analyzed in literature
• Sine wave and sine pulse
• Lorentz and Gauss pulses
• Soliton and N-wave
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Does Does RunupRunup HeightHeight depend on depend on 
the the Incident Wave Shape Incident Wave Shape where where 
the Incident Wave is symmetrical?the Incident Wave is symmetrical?

Phys. Fluids, 1988, v. 31, No. 1

For periodic wave For periodic wave –– yes!yes!
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For single wave???For single wave???
Incident wave shapes used in literature:

1. Solitary Wave
2. Gaussian Pulse

3. Lorentz Pulse

and several others
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Wave Length (Duration) Definition for PulseWave Length (Duration) Definition for Pulse

We suggest to use length of the wave
on 2/3 level – philosophy used to  
define the significant wave properties 
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Incident Wave Shapes:
examples 
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Parameterized Formulas
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Applications:Applications:

Fast Estimates of Fast Estimates of RunupRunup CharacteristicsCharacteristics
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Canadian Couple
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Incident wave can be asymmetric!
(two scales for face and back slopes)

Nonlinear Deformation
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Nonlinear Deformed Wave as Input for Runup Formulas
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Conclusion:
Steep Wave Penetrates Inland 
over Larger Distance and with Greater 
Velocity, than a symmetric one
-and Slowly into the Sea

Formulas for Solitary Wave Runup
can be Parameterized

These results are important for 
engineering estimates
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water theory
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Bottom of a Special Profile
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Traveling wave solutions for 
arbitrary bottom profile
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Boundary condition
First all, the wave equation should be solved on semi-axis 
(0<τ<∞)
The natural boundary condition for the “reduced” wave 
equation in this point τ=0 is

0),0( == tv τ
It provides the boundedness of the water displacement 
on the shore. 

In this case the domain can be extended to the whole axis 
(-∞<τ<+∞) and initial conditions should be continued for τ<0 
with sign inversion of the water displacement (“imaginary mirror” 
reflection condition).
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Water displacement and velocity on 
a beach of special profile
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The wave amplification when the wave approaches 
the shore and its differentiation on the shoreline
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Maximal runup height
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for a plane beach
Synolakis (1987)
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special profile

Conclusions
• The runup of solitary waves of moderate 

amplitudes on a beach of special profile 
leads to more energetic amplification than 
for the beach of constant slope

• The shape of the water oscillations in the 
shoreline is determined by the first 
derivative of the incident wave shape




