UWI-NGI project 2006-2008 Tsunamis in the Caribbean - Regional Exposure and Local Risk Assessment

NOTE: The following contains example calculations simply meant to DEMONSTRATE a methodology, and should not be considered as final results meant for further use in planning, hazard or risk assessment.

Carl B. Harbitz & Sylfest Glimsdal

Contributions from: Hilmar Bungum, Conrad Lindholm, Natalia Zamora, Peter Gauer, Finn Løvholt, Nadia Gour, Regula Frauenfelder, Kjetil Sverdrup-Thygeson, Helge Smebye, Unni K. Eidsvig, Oddvar Kjekstad, CZMU

ICG/CARIBE EWS WG2 meeting, Pointe-a-Pitre, Guadeloupe, December 7th 2008

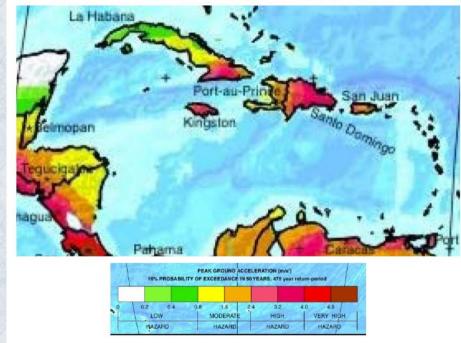
Caribbean Tsunami Database - Compilation of recorded events

 Critical assessment of two tsunami catalogues and one earthquake catalogue
 National Geophysical Data Centre (NGDC)
 Tsunami Laboratory Novosibirsk (TLN)
 R. Engdahl

Source location for all recorded tsunamis in the databases – first data from year 1498

Tsunamis in the Caribbean Sea - example scenario criteria

- Sound choices based on the historical records
- Examples of various kinds of sources
- Regional distribution to serve as an example of regional exposure assessment
- Avoid reproduction of previous studies
- Relevant for partners in this project
- Relevant as input for Bridgetown tsunami risk demonstration project
- We will present:
 - 2 earthquake tsunami scenarios
 - 2 subaerial volcano debris flow tsunami scenario
 - 1 submarine landslide tsunami scenario
 - 1 trans-oceanic tsunami



Regional seismic hazard

 NE Caribbean more exposed than Lesser Antilles

ICG

re 2.8. Seismic hazard results for the Caribbean region from the Global Seismic Hazard Assessment Project (GSHAP; Shedlock et al., 2000).

Tsunamis generated by earthquakes – suggested scenarios Maximum magnitude:

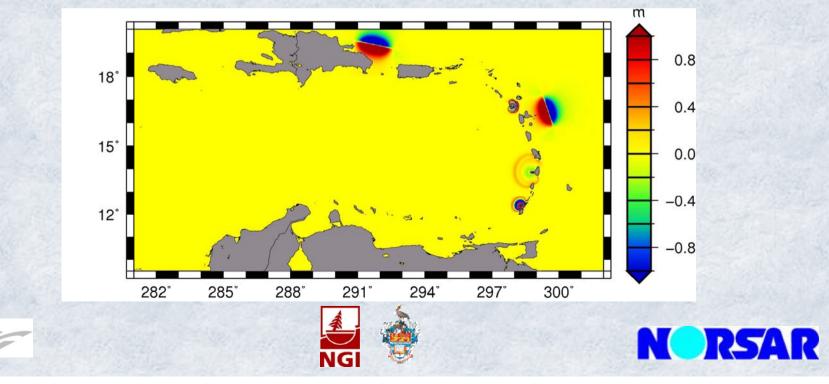
 Largest credible earthquake around M 8.0, no potential for tsunamis similar to 2004 Sumatra/Indian Ocean tsunami

Locations:

Sources based on combination of
 historical eq and tsunami occurrence
 large scale tectonics

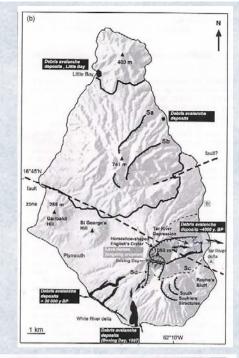
Tsunamis generated by volcanoes and landslides

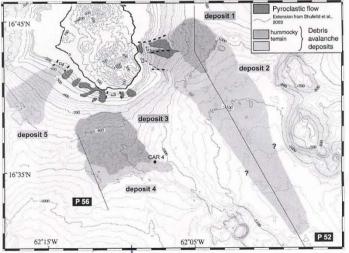
Information on volcanological sources provided by Dr. R. Robertson, SRC, and compiled by NGI 2 eruptive volcanoes: Subaerial at Montserrat Submarine Kick'em Jenny St. Lucia debris flow

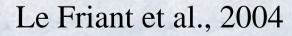


The scenarios

Totally five scenarios


ICG


- Due to different return periods we divide our study into two groups, one for earthquakes and one for slides.
 - Earthquakes Mw 8.0 (Lesser Antilles and north of Hispaniola)
 - Slides (Monserrat, St. Lucia, and Grenada)



Example study III: Subaerial landslide from Soufrière Hills volcano, Montserrat

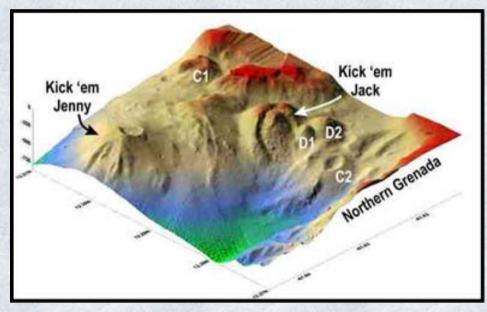
- Soufrière Hills: eruptive volcano, much focus
- 4000 BP event not modelled before (?), "worst case scenario" (?)
- English's Crater flank collapse
 - Deposit 1 formed by 1 event (Le Friant et al. 2004)
 - Volume: L x W x H = $1.6 x 1 x 0.1 \text{ km}^3 = 1.6 \cdot 10^8 \text{ m}^3$
 - Submerged run-out: 5.4 km (from deposits)
- Impact velocity: 30 m/s
- 1997: 2.5-10⁷ m³
- 2003: 2.10⁸ m³ (as smaller volumes, limited velocities)

NRSAR

9

Example study IV: Submarine landslide – close to Kick'em Jenny

- Most active volcanic centre in Lesser Antilles arc
- 8 km north of Grenada
- First observed in active eruption 1939, small tsunami
- Since then erupted at about 5-year intervals
- Summit of the volcano is now > 130 m below surface
- Multibeam surveys suggest flank collapse east of the active cone and debris flows running 15-30 km to the west with thickness of tens to hundreds of meters, smaller has a volume of 10 km³ (Sigurdsson et al. 2006)



Kick'em Jenny and Kick'em Jack

Not to the east

Kick'em Jack not to be considered in terms of flank collapse

Source: http://www.uwiseismic.com/KeJ/kejhome.html

Gisler et al. 2006

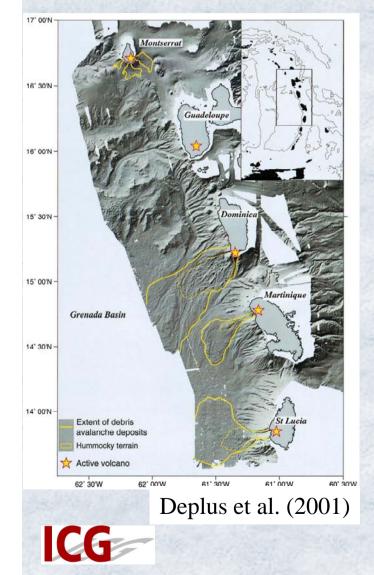
- Depth of summit now 190 m, not significantly diminishing, water pressure confines the explosive effects
- SAGE hydrocode simulations: Coupling of explosive energy to wave energy is inefficient compared to slower mechanisms (only a few percent of source energy transferred)
- Conclusion:
 - no danger (except for gases and missiles threatening shipping)
 - Efficient production of tsunami requires earthquakes or landslides
 - Tsunami danger from explosive eruptions less than from slope failure at that volcano (similar to that which caused the horse-shoe shaped cleft in which the volcano currently nestles)

Figure 2. Final wave profiles for the three representative runs.

From these reasons...

- 0.6 km³ western flank collapse on Kick'em Jenny
- Run-out 10 km to the west

(from statistics, H/L = 1.5 km/10 km = 0.15)


U_{max} = 45 m/s (from analytical calc)

Example study V: St. Lucia

- Run-out 18 km
- Max. vel. 40m/s
- W x H x L = 1.32x800x200x1200 = 250 Mm³
- Lindsay et al. 2002:
 - Sulphur springs within Qualibou caldera is a susceptible area (but not the "worst case" large explosive magmatic eruption)
 - Lack of age data makes it impossible to develop an eruption frequency
 - Major activity 35-20 000 years BP
 - Deposits easily eroded, possible that more eruptions have occurred over the last 20 000 years and that products have not been preserved.

Probability of earthquake scenarios

From convergence rates, records, and literature
Hence, the proposed M8 earthquake scenarios have a return period of approximately 500 years

(i.e. a probability of 10 % of an event occurring in 50 years)

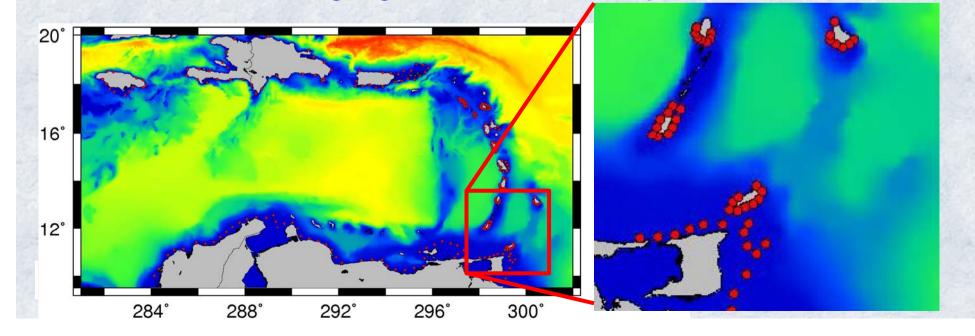
Somewhat larger than Zahibo et al. (2007):

M8 earthquake return periods of ~200 years

Probabilities – summing up

Zahibo & Pelinovsky 2001:

- Run-up exceeding 2-3 m: Return period 100 years
- All events (cumulative), all kinds of tsunamis
- Earthquakes M8: return period 500 years
 Non-seismic :
 - Return period of smaller events in the northern part of the arc: order of 1000 years
 - Return period of larger events in the southern part of the arc: order of 10 000 years



Approach for the regional tsunami exposure assessment

- Defining a set of tsunami sources
- Simulate the tsunami propagation (GEBCO 1min grid)
- Extracting data at gauges at depths of 50 m
 - High number of gauges
- At each gauge we want to relate the surface elevation measured at the gauge to on-shore run-up

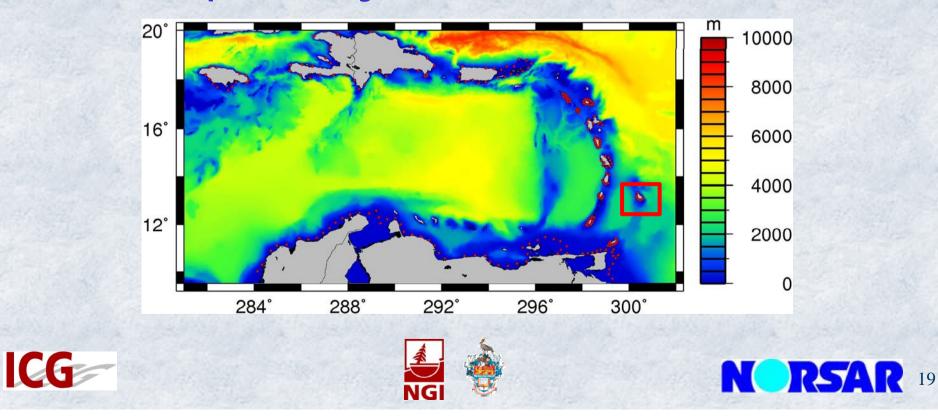
Considerations

Combined effects:

 Sea level rise 0.2-0.5 m (In 2100, IPCC)
 High tide, daily: 0.5-0.7 m
 a waterdepth of 0.7 m is added

 Not taken into account (rare events):

 Spring tide
 Storm surges



Life of a tsunami

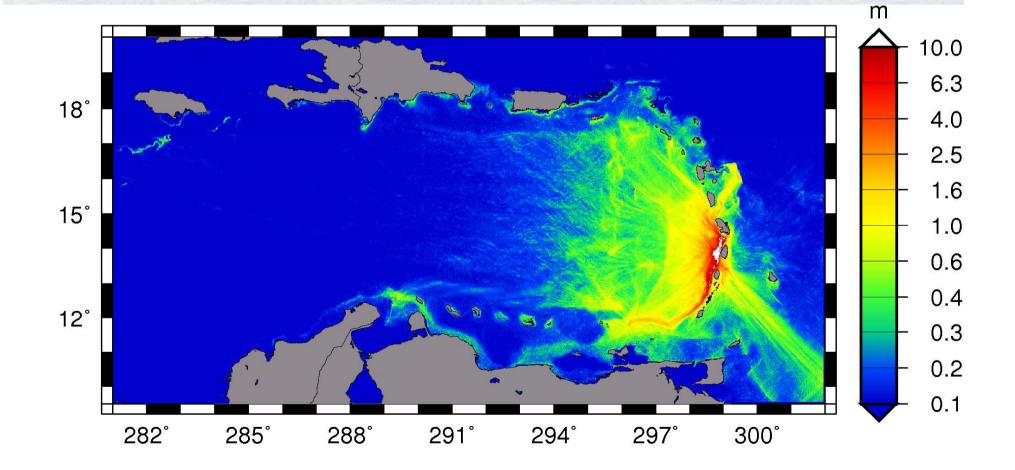
Generation phase (earthq. or slide)
Tsunami propagation
Run-up on dry land

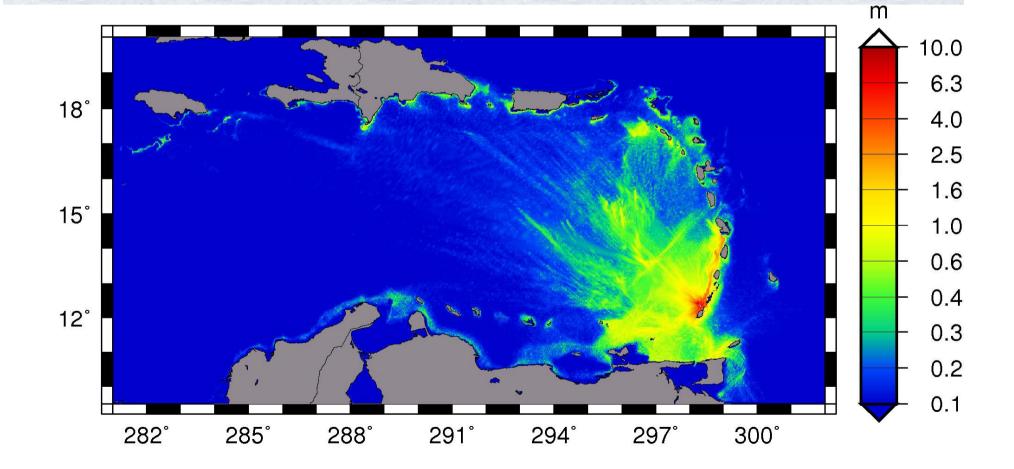
Tsunami modeling; generation

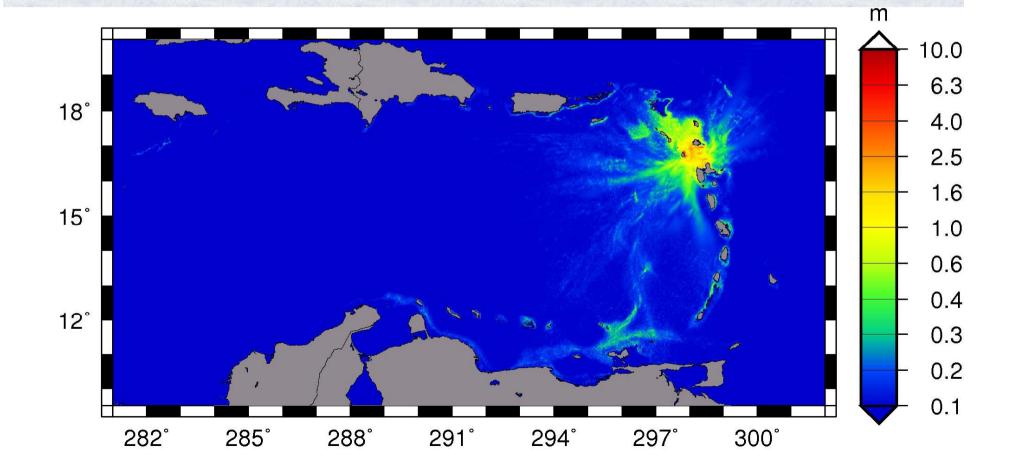
Earthquake

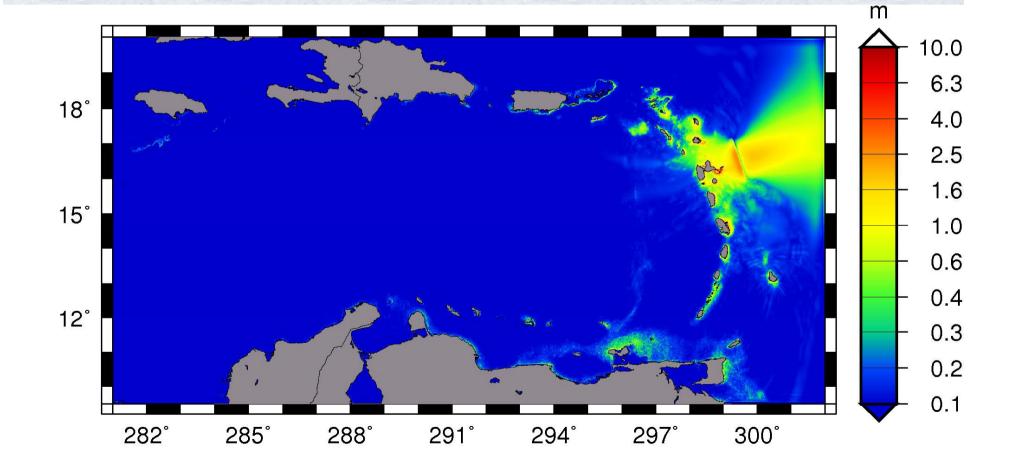
- prescribed initial condition using analytical formula of Okada (1992)
- Slide
 - runout length, velocity progression, slide dimensions
 - compute sink/source distribution (time dependent bottom deformations)

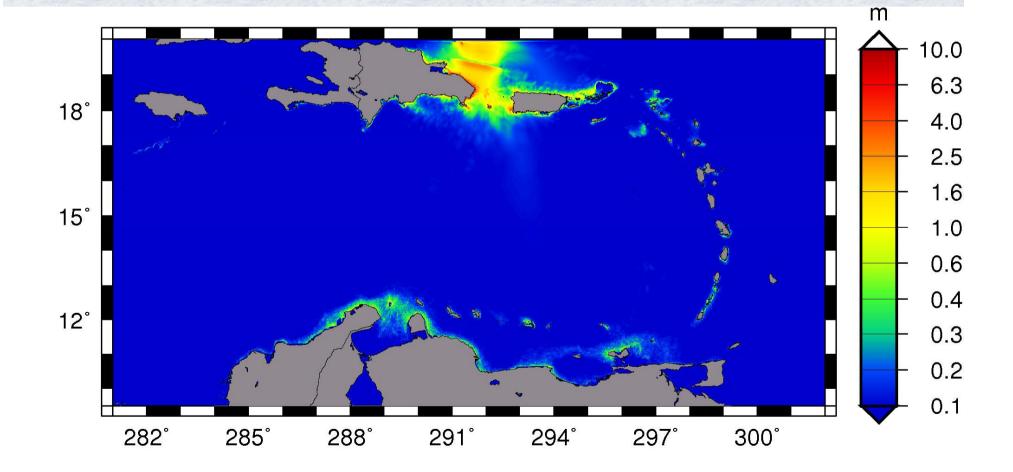
Tsunami modeling; propagation


- "Globouss" depth averaged Boussinesq model developed at ICG/UiO/NGI
 - Improved model compared to previous models applied in this project
 - Dispersive effects (may be important for tsunamis propagating over long distances in deep water)
 - Non-linear effects (most important nearshore)
 - Cartesian or geographical coordinates
 - Coriolis forces and open boundaries
 - No possibility for calculating run-up
 - Noflux condition at shoreline, doubling of the surface elevation




Tsunami simulation; St. Lucia slide


Tsunami simulation; Grenada slide

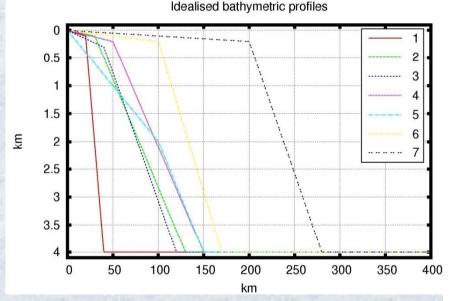

Tsunami simulation; Montserrat slide

Tsunami simulation; Lesser eq.

Tsunami simulation; Hispaniola eq.

Method for run-up estimation

- We want to evaluate the surface elevation at several hundred locations
- Too time-consuming to do refined study with run-up models at each location
- Instead we apply *amplification factors* on the off-shore measured elevation to find the apporximate on-shore run-up


Amplification factors

Simulations along 1D profiles:

- Different idealized bathymetric profiles (see figure)
- Linear hydrostatic wave model (runup measured at shoreline)
- N-wave (sinus shaped)
 - Leading depression or leading elevation
 - Different wave periodes
- Establish a set of amplification factors for different combinations of terrain and wave parameters

NRSAR

Run-up estimation

- At each gauge we determine
 - The scenario with highest maximum elevation
 - The period of incident wave (set manually)
 - The shape of the incident wave: Leading elevation or leading depression
 - Find the amplification factor based on the period, shape and the bathymetric profile

RUN-UP = max. elevation x amp. factor

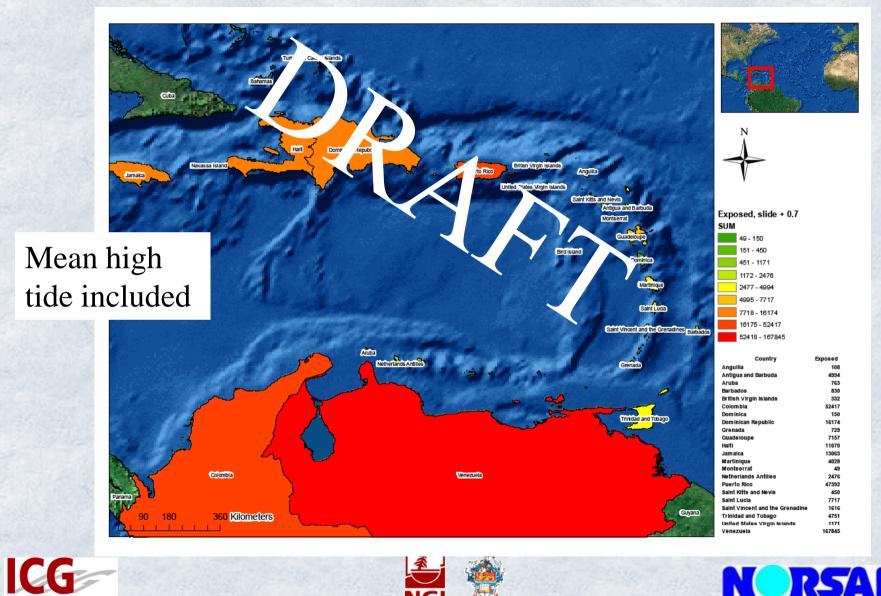
Summary regional tsunami modeling

- A method for regional tsunami hazard assessment is presented
- Off-shore surface elevation is transformed into on-shore run-up by applying amplification factors
- Amplification factors
 - Based on bathymetric slope
 - Wave characteristics (shape and period)
- Method to be further improved and refined
- Run-up heights are successfully compared to refined numerical run-up modeling

Regional tsunami exposure

- "Risk = hazard x exposure x vulnerability"
- Separate evaluations for seismic and nonseismic sources due to different orders of return period magnitudes
- Trans-oceanic tsunamis not included
 - Extreme events have even longer return period
 - Longer warning time
- Adding 0.7 m for mean high tide
 - (and a little climatic sea level rise)

Regional exposure to seismic tsunamis



Regional exposure to non-seismic tsunamis

Regional exposure to tsunamis, example seismic sources – Puerto Rico

Regional exposure to tsunamis, example non-seismic sources - St. Lucia

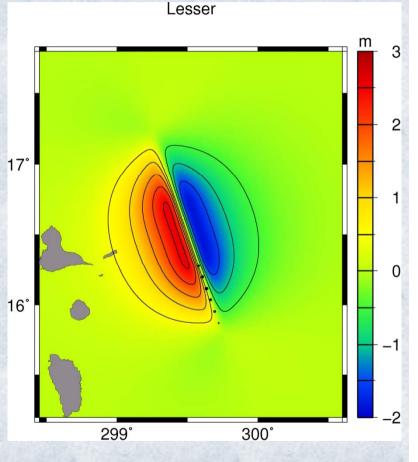
ICG

Local tsunami run-up modelling; ComMIT/MOST

- NLSW equations
- Geographical coordinates
- Most common model for inundation/runup modeling
- Require high-resolution grid
 - Nesting og grids, three levels
 - Run-up calculated on the finest grid

Coupling of models

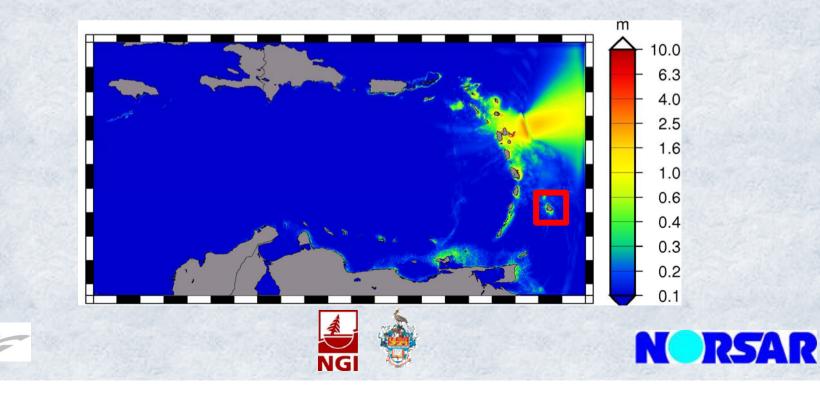
- Own software established for producing inputfiles for ComMIT from tsunami propagation models
 - Propagation matrices for surface elevations and velocity
 - Whole fields stored at each timelevels (can be coarser both in time and space)
 - May now couple any tsunami model at NGI with ComMIT/MOST



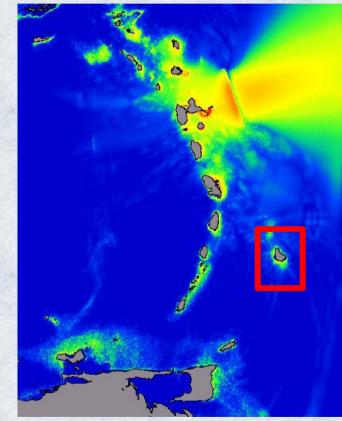
Run-up at Bridgetown; the tsunami scenario

- Mw 8.0 at Lesser Antilles (highest run-up at Bridgetown of the five scenarios)
- 3 segments, L=65 km, W=55 km,
 Slip = 6 m for central, 0-6 m for
 - end segments
- Analytical Okada model (1992) applied to convert slip motions to seabed displacements

NRSA



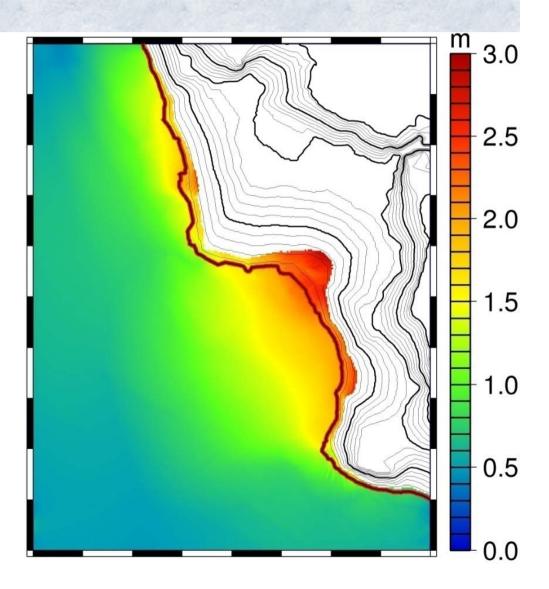
Tsunami simulation; Lesser earthquake


- Computational domain for the tsunami propagation phase
- Amplification of waves nearshore
- Minor effect of disperion

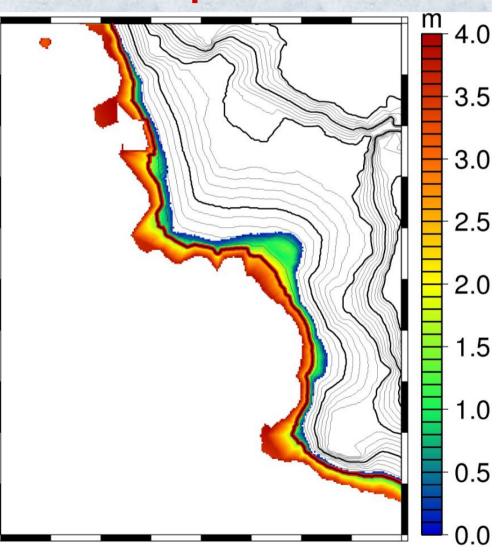
ICG

Input to ComMIT/MOST

 Values for surface elevation and velocities extracted from the tsunami propagation model
 Stored in netcdf-format
 High-resolution grid of Bridgetown



Maximum surface elevation


Run-up 2-3 m
Heighest run-up about 3 m
Large local variations
At the shoreline, maximum elevation 1.5 to 2.5 m

ICG

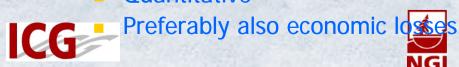
Maximum flowdepth

 Height of water above ground
 2-2.5 m maximum flowdepth on shoreline

Summary; local run-up calculations

- The tsunami run-up from the Lesser earthquake scenario is evaluated
- Max run-up was calculated to approx. 3 m (high tide and sea-level rise; totally 0.7m above "Mean Lower Low Water" - MLLW)
 Large local variations

Local tsunami risk <u>demonstration</u> project for Bridgetown, Barbados



Tsunami hazard and risk maps

• For warning:

- Inundation height
- Highly populated / vulnerable areas
- Critical facilities
- Areas to be evacuated
- Escape routes
- Elevated / safe areas
- Personnel to be warned
- For coping capacity (short term / long term)
 - Inundation height
 - Critical facilities
- For area planning:
 - Inundation height or momentum flux (loads for design)
 - Previous events
 - Highly populated / vulnerable areas
- For risk comparison and preferences
 - Detailed
 - Quantitative

Bridgetown tsunami risk assessment

Risk = Hazard * Consequence Hazard = maximum tsunami flow height related to a certain probability of occurrence Consequence described by vulnerability and by density of population (exposure) Vulnerability = 4 factors describing the buildings:

Height – material – barrier - use

Input data to produce consequence map

Dataset	Datatype	Description	Origin
Buildings	Polygon	Outline of all buildings	Official
BuildPoint	Point	Building centerpoins, derived from "Buildings"	Derived
EnumDist	Polygon	Statistics for each enumeration district	Official
Study_Area	Polygon	Outline of the defined study area, below 10 meter a.s.l.	Digitized
BuildVul	Point	Vulnerability information of 1211 buildings within study area	Field work
Score	Table	Mapping table, giving the vulnerability score (1-4) for each of the four building factors: height, barrier, material, use	Nadia

HeightCode	HeightCode HeightVulnerabilityScore Description							
1	4	Only one floor			100			
2	2	2 floors						
3	1	3 or more flo	ors Bar	rierCode		BarrierVulnerabilityScore	Description	
				1		4		
Mannir	ng tables	with		2		3	Low/narrow earth embankment	
mappi	ig tubics	VVILII	1/200	3		2	Low concrete wall	
Vulner	ability sc	ores		4		1	High concrete wall	
vunici	ability sc	0103		5		2	Low stone wall	
				6		1	High stone wall	
MaterialCode	MaterialVulnerabilityScore	Description Stone Wood or timber Wood + concrete						
1	2							
2	4							
3	3							
4	4 1 Concrete							
5	2	Metal UseCode UseCode		UseVu	ulnerabilityScore Description			
6	3	stone and woo	1	1		-	Residential/community service	
7	2	concrete/meta			3	Business/Commercial		
8	3	concrete/ston	3				Tourism	
			4	4 10			Government Services (Health, Education, Fisheries, transpor	
		5				Emergency Services (Police, Fire, Coast Guard, EMS, medica		
		6				Community facilities (e.g. churches, community centers, reci		
		7				Utilities (water, electricity, sewage, telecommunications, fuel,		
			8			Heritage Sites		
ICG	ICG-		9			5 Banking and finance		
				0 Abandoned				

Mapping "subtables" for building use 'utilities'

Hard Market Contract	a the same the same	
UtilMatCode	UtilMatVulnerabilityScore	Description
2	3	Wood or timber
5	2	Metal
7	2	Concrete and Metal
4	1	Concrete

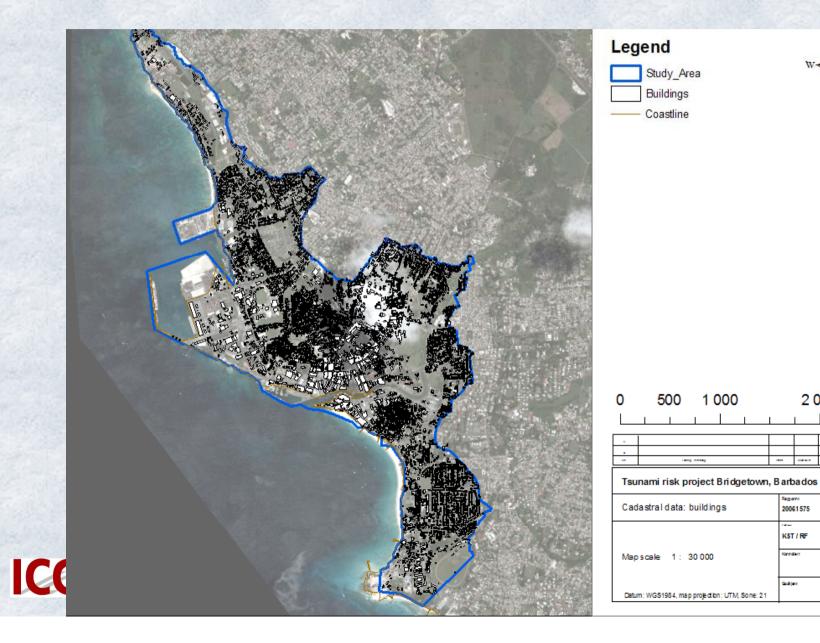
Mapping table for building material for utilities

UtilLocCode		UtilLocVulnerabilityScore	Description	
1		3	Above ground	
2		2	Both above ground and below	
3		1	Underground	

Mapping table for building *location* for *utilities*

UtilBarCode	UtilBarVulnerabilityScore	Description	
1	4	No barrier	
2	3 Low/narrow earth embankment		
3	2	Low concrete wall	
4	1	High concrete wall	
5	2	Low stone wall	
6	1	High stone wall	

Mapping table for building <u>barrier</u> for <u>utilities</u>



Problems encountered Buildings neither randomly selected nor randomly distributed distribution of buildings not "statistically correct" Need to "extrapolate" information No link between surveyed buildings (GPS) positioned) and "official building outlines" ICG **N**RSAR

Generation of population density map

2 000 m

(arbilag no

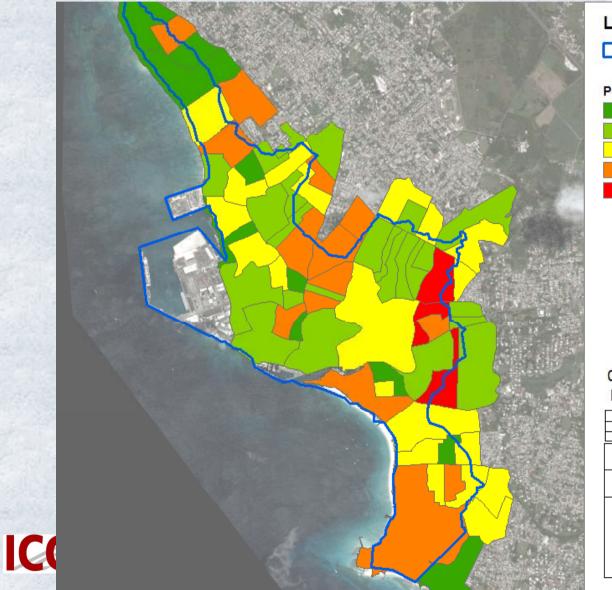
01

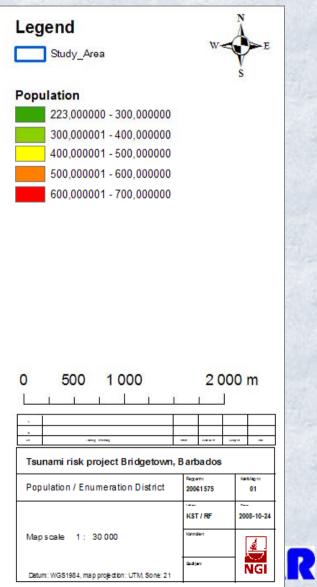
2008-10-24

4 Ю NGI

2

-


20061575


KST / RF

Konsilert

Godejana

Generation of population density map

Generation of population density map

eg	lend
	Study_Area
vge	erage population density
٠	0,96 - 1,94

- 1,95 4,66
- 4,67 25,53
- 25,54 71,71
- 71,72 173,67

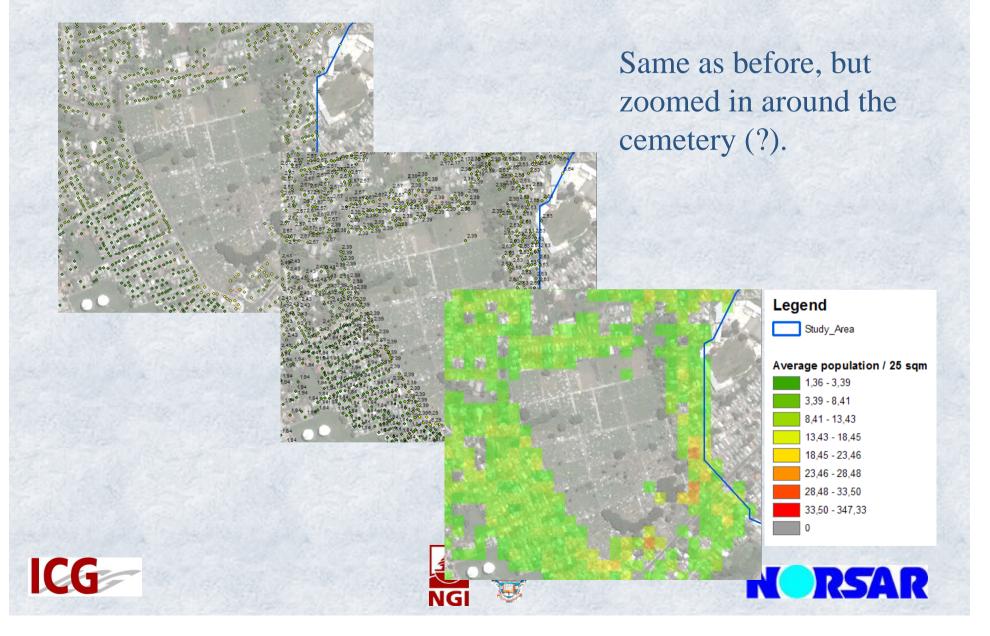
'Building outlines' converted to 'building points'

Average population per building point

Population density map in vector format (points)

R

Final product: population density map



IC

-'Building points' converted into raster information, e.g. 25 m resolution (can be altered)
-'Average population per 25 sqm'
-NB: Everyone is at home, refinements later

Population density map (zoom-in)

Generation of coping capacity map

Show: All Selected

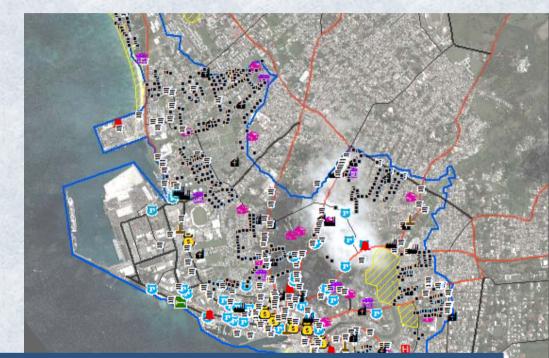
215299 1451016

Records (0 out of 1211 Selected)

Options -

J'SAR

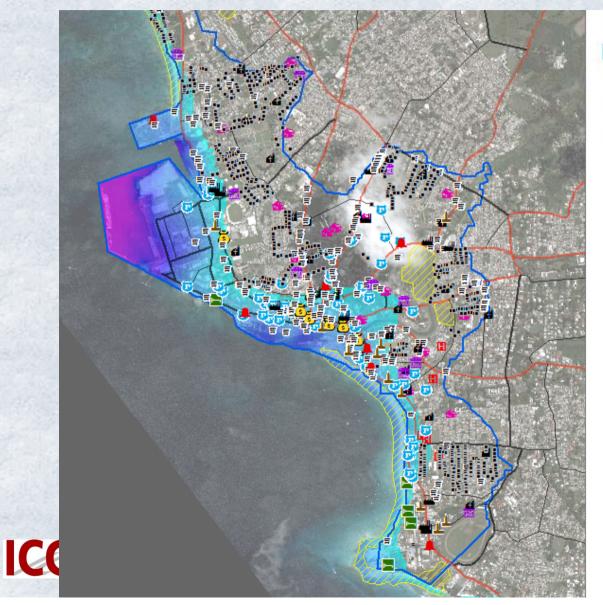
-1211 buildings surveyed by Nadia Gour, among others: 'use
-10 'use categories'
- and recreational areas (beaches, parks) are category 11

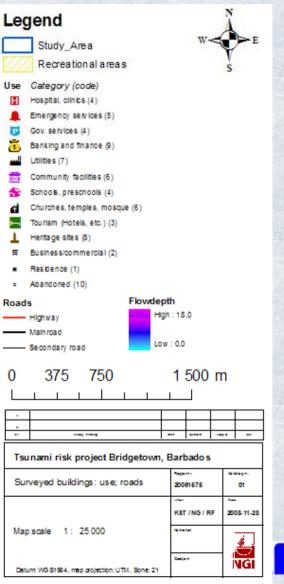

66 Berger Paints Limited

0 + +1

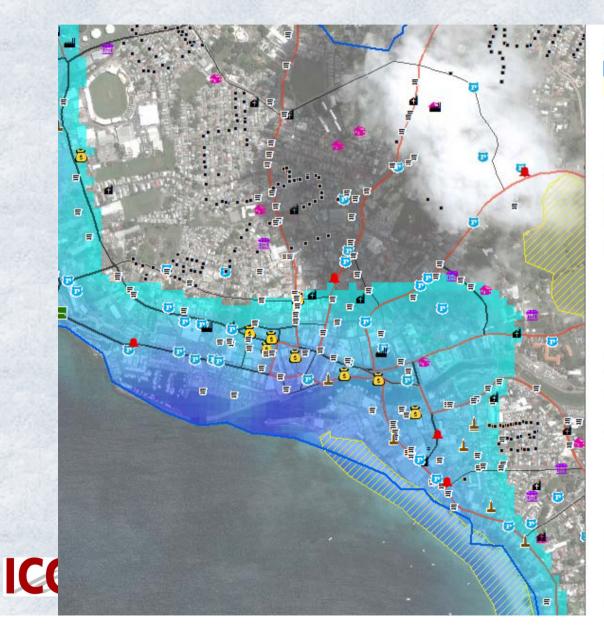
Record: 14 4

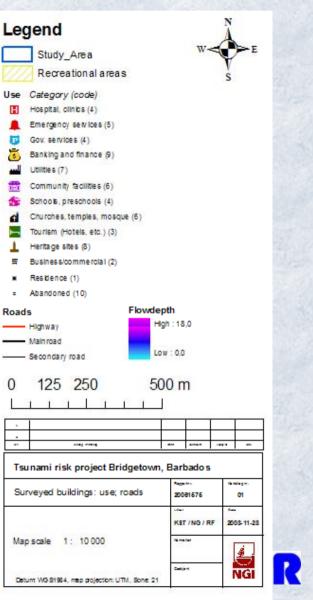
ICG


Side-product: critical facility map (for 1211 surveyed buildings)



'Building use can be more refined, e.g. hospitals/universities (Gov)
Here: not combined with information from cadastral data (to avoid that 1211 buildings appear twice)
combine with tsunami flow depth




"Final side product": coping capacity map

"Final side product": coping capacity map (zoom-in)

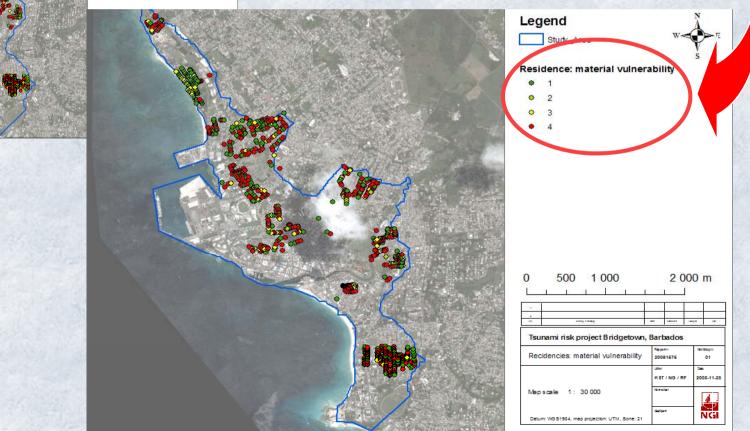
"Final side product": coping capacity map

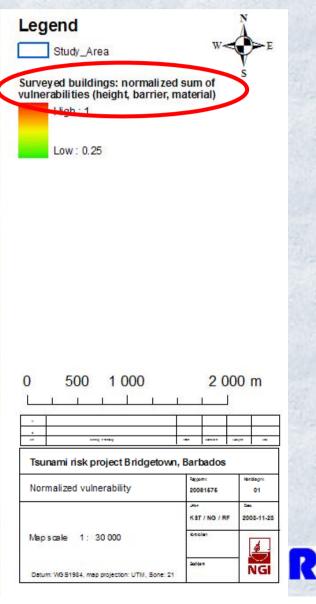
Result for scenario "High-water plus Tsunami wave":

- Banking & finance sector would be considerably affected (8 out of 8 surveyed banking & finance buildings would be affected)
- Emergency services would be considerably affected (4 out of 7 surveyed emergency services would be affected)
- This does, however, not include hospital and clinics, as they are treated as an own subclass in this example
- Commercial sector in city centre (around river mouth) would be considerably affected
- Coastal road would be unserviceable within almost entire study area
- Tourism would be considerably affected, because harbour, beaches, and many heritage sites would be affected

Coping capacity map: possible refinements

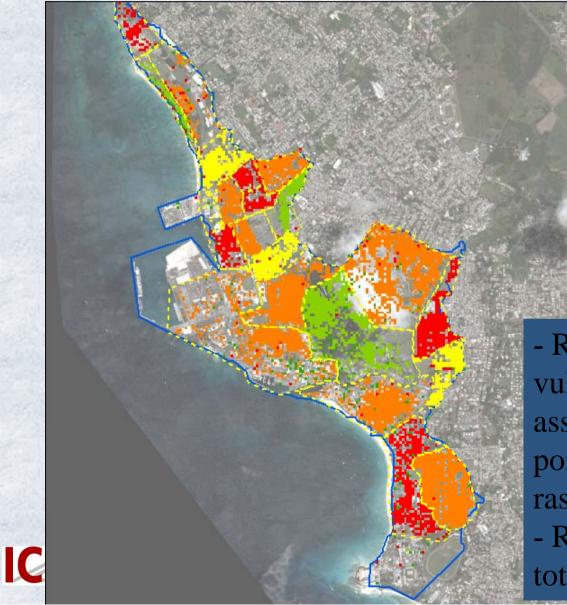
			ty Maps ¹²
Building use	Code	Short term/acute	Long term ⁴
Residential/community service	1	1,00	1,00
Business/Commercial		1,00	1,00
Tourism	3	1,00	1,50
Government Services (Health, Education, Fisheries, Transportation, etc.) ¹	4	1,50	1,50 11
Emergency Services (Police, Fire, Coast Guard, EMS, medical etc.)	5	1,50	1,00
Community facilities (e.g. churches, community centers, recreational areas) ²	6	1,5 ²	1,00
Utilities (water, electricity, sewage, telecommunications, fuel, gas stations) ⁷	7	1,50	1,00
Heritage Sites ³	8	1,00	1,00
Banking and finance		1,00	1,50
Abandoned ⁴	10	1,00	1,00
Open/public areas, streets, beaches ^{5,6}	11	1 or 1,5 ¹³	1,00
Total			

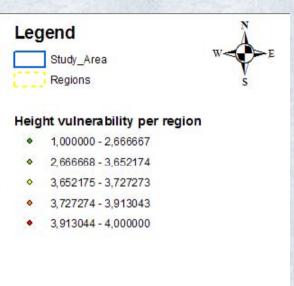



ICG

MaterialCode	MaterialVulnerabilityScore	Description	
1	2	Stone	
2	4	Wood or timber	
3	3	Wood + concrete	
4	1	Concrete	
5	2	Metal	
6	3	stone and wood	
7	2	concrete/metal	
8	3	concrete/stone/glass	

Mapping table for building material





- How to transfer the vulnerabilities of the 1211 buildings to a greater area?
 Divide the city into areas of largest possible homogeneity.
- Local expert knowledge needed
- Mean vulnerability score of the surveyed buildings in each region is assigned to each building point in the same region

- Can be changed, e.g. can mean value be replaced by mode value

Raster map with 'Average vulnerability per region assigned to each building point within region', raster resolution: 25 m
Repeat for all factors, obtain total normalized vulnerability

Last worksteps

Combination of mortality with vulnerability
Inclusion of day/night exposure
Consideration of recreational areas

Other considerations:

- Need to normalise vulnerabilities?
- We may lose higher risk scenarios
 - Smaller, but more frequent
- Vulnerability also depends on:
 - Education, knowledge, awareness
 - TEWS
 - Other mitigation measures
 - evacuation plans and routes
 - safe elevated areas
 - barriers, ...
 - Age of population
 - Differences in night and day use of buildings, etc.
 - ••••

Other risk than mortality not considered

- Economic loss
- Ecological
- Reputation
- Perceived risk

....

Lessons learned Use 'building ID' rather than GPS position Avoid all complicated transfer of information from surveyed buildings to mapped buildings Nothing impossible! Local institutions / contacts (Cave Hill, CZMU, SRU) A skilled student (or 10) External (?) tsunami and GIS expertise ICG