Probabilistic Tsunami Hazard Assessment

Paula Dunbar
Paula.Dunbar@noaa.gov
and
David Green NOAA Tsunami Program
David.Green@noaa.gov
Hazard, Vulnerability, and Risk

• Hazard Assessment is the first step in determining the actual risk from a hazard
• **Hazard** – the *probability of occurrence* of a potentially damaging phenomenon, e.g. earthquakes, tsunamis
• **Vulnerability** – the *degree of loss* resulting from the occurrence of the phenomenon due to *exposure* and *fragility*
• **Risk** – *hazard and vulnerability are combined* to estimate expected number of casualties, direct economic losses, indirect economic losses due to business interruption
Hazard Assessment

• Identification of sources and calculation of probability of occurrence
 – Historical record of occurrence is analyzed
 – For hazards that occur infrequently, use of geologic data can extend the record significantly

• Hazard assessments for infrequent hazards
 – Deterministic - single-valued events to arrive at a scenario-like description
 – Probabilistic - multi-valued or continuous events and models incorporating the effects and frequencies of all events that could impact a site
Tsunami Hazard Assessment (THA)

- Deterministic vs Probabilistic THA
 - Different analysis for different purposes
 - **Deterministic THA** - Evacuation Maps derived from tsunami inundation maps are based on the maximum credible tsunami
 - **Probabilistic THA** – Insurance applications focus on 1% annual probability of exceedance or the 100-year base flood standard
 - Problems in analysis and interpretation
 - **Deterministic THA** – intuitive measure of probability is used for less common sources such as asteroids, submarine landslides, volcanic processes
 - **Probabilistic THA** – difficult to interpret since not based on one event
Local, Regional, and National PTHAs

- **Probabilistic Analysis of Strong Ground Motion and Tsunami Hazards in Southeast Asia**, 2007, H.K. Thio, P. Somerville, G. Ichonise
- **Probabilistic Analysis of Tsunami Hazards [Acapulco, Mexico and U.S. Pacific Coast]**, 2006, E. Geist and T. Parsons
- **A Probabilistic Tsunami Hazard Assessment for Western Australia**, 2007, D. Burbidge, P. Cummins, and R. Mieczko
- **Probabilistic Tsunami Hazard Assessment of El Salvador**, 2005, B. Brizuela
PTHA Data and Modeling Requirements

• Historical and Prehistorical tsunami (deposit) data
• High-resolution DEMs (topography, bathymetry, tidal information)
• Quantitative probabilistic models of local and far-field tsunami sources (earthquake, landslide, volcano)
• Numerous inundation and propagation simulations for tsunami sources
• Probabilistic tsunami hazard assessment model

• Different regions will have varying spatial and temporal data resolutions and data accuracies
Historical Tsunami Record

• Global Historical Tsunami Data
 – Source event (time, location, magnitude)
 – Run-up locations where tsunami waves were observed
 (water heights, arrival times, wave periods)
 – Damage, deaths, injuries from the source and the tsunami

• Subset the study area and determine -
 – Frequency, spatial distribution, characteristics
 of historical tsunamis in the study area
 – Frequency of local, regional and distant tsunamis affecting
 the study area
 – Frequency of tsunami sources
 (earthquakes, volcanoes, landslides)
 – Completeness of the catalog
 – Reliability of the tsunami events
 and runups
Prehistorical Tsunami (deposit) data

• Evidence of minimum inundation areas
• Spatial distribution and ages used for validation of hydrodynamic modeling
• Changes in topography or bathymetry and shoreline stability need to be accounted for
• Used to develop tsunami recurrence intervals at sites with simple topography and well-preserved tsunami deposits
• Historical and Prehistorical data are used to validate models
Digital Elevation Models

• Determine highest resolution coastal relief data available for the study area, examples:
 – ETOPO2 provides two-minute gridded global relief for both ocean and land areas
 http://www.ngdc.noaa.gov/mgg/global/global.html
 – International Bathymetric Chart of the Caribbean Sea and the Gulf of Mexico
 http://www.ngdc.noaa.gov/mgg/ibcca/ibcca.html

• Tidal information
 – DEMs should be referenced to Mean High Water (MHW) for the worst-case scenario

• Shoreline changes
 – Can be obtained from historical aerial photography
Tsunami Source Specification

- Determine geologic setting of study area
- Determine earthquake source magnitude, geometry and maximum return period for local and distant sources
- NOAA / PMEL Facts database includes pre-calculated time series of tsunami waves from 182 (unit) sources in the Caribbean

<table>
<thead>
<tr>
<th>Segment Name</th>
<th>Maximum Magnitude</th>
<th>Dip</th>
<th>Maximum Seismogenic Depth</th>
<th>Number p.a. ≥ Mw7.0</th>
<th>Slip-rate (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andaman Megathrust</td>
<td>9.3/9.5⁺</td>
<td>14</td>
<td>50</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>Sumatra Megathrust</td>
<td>9.3/9.5⁺</td>
<td>15</td>
<td>50</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>Java Megathrust</td>
<td>8.5/9.0/9.3/9.5⁺</td>
<td>16</td>
<td>60</td>
<td>0.093</td>
<td></td>
</tr>
<tr>
<td>Sumba Megathrust</td>
<td>8.5/9.0/9.3/9.5⁺</td>
<td>14</td>
<td>60</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>Sumba Normal²</td>
<td>8.5/9.0⁺</td>
<td>55</td>
<td>47</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>West Timor Thrust</td>
<td>7.5/8.0⁺</td>
<td>20</td>
<td>17</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>East Timor Strike-Slip</td>
<td>7.5/8.0⁺</td>
<td>73</td>
<td>48</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>Tambar Normal</td>
<td>7.5/8.0⁺</td>
<td>55</td>
<td>41</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td>Wetar-Flores Thrust</td>
<td>8.0/8.3⁺</td>
<td>20</td>
<td>17</td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td>South Aru Strike-Slip</td>
<td>7.5</td>
<td>73</td>
<td>48</td>
<td>47.8</td>
<td></td>
</tr>
<tr>
<td>Aru Normal</td>
<td>7.5</td>
<td>55</td>
<td>41</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td>South Seram Thrust</td>
<td>7.5</td>
<td>20</td>
<td>17</td>
<td>75.7</td>
<td></td>
</tr>
<tr>
<td>Seram Megathrust</td>
<td>8.5/9.1⁺</td>
<td>14</td>
<td>30</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>West Seram Thrust</td>
<td>7.5</td>
<td>20</td>
<td>17</td>
<td>64.9</td>
<td></td>
</tr>
</tbody>
</table>

Geometry and physical properties of the fault segments used in the probabilistic tsunami hazard assessment, *A Probabilistic Tsunami Hazard Assessment for Western Australia*, Burbridge, Cummins and Mieczko
Pre-computed tsunami propagation scenarios for 182 “Unit sources”
Propagation and Inundation Modeling

- Inundation models simulate tsunami evolution from the earthquake generation, transoceanic propagation and inundation of dry land.
- Model output is compared with historical data.

Examples:
- **MOST** (Method of Splitting Tsunami) model - developed by Titov of NOAA/PMEL and Synolakis of Univ. of S. California
- **JRC** – developed by European Commission Joint Research Institute
- **ANUGA** – developed by Geoscience Australia and Australian Natl Univ.
- **TUNAMI-N2** (Tohoku University's Numerical Analysis Model for Investigation of Near field tsunamis) model, developed by the Disaster Control Research Center of Tohoku University.
Probabilistic Method

- Probabilistic Seismic Hazard Assessment (PSHA)
 - Probability that some measure of earthquake ground motion, such as peak ground acceleration, may be exceeded at a location of interest
 1) Specification of earthquake source parameters and associated uncertainties
 2) Specification of the attenuation relationships
 3) Probabilistic calculations

- Probabilistic Tsunami Hazard Assessment (PTHA) developed from PSHA
 - Probability that a tsunami wave height will be exceeded immediately offshore a location of interest
 - PTHA needs to include far-field and local sources
 - Most PTHAs only deal with earthquake sources

1755 Liston Portugal Tsunami Travel Time Map (NOAA/NGDC)
PTHA Methods

• Computationally based
 – Relies on knowledge of source parameters, recurrence rates and their uncertainties
 – Useful when few historical records or many possible sources
 – Based on PSHA method
 • Determine maximum tsunami amplitude at a particular source location
 • Propagation – tsunami amplitude is modified by attenuation and shoaling factors
 • Calculate the rate of tsunamis per year that exceed a wave height at a coastal location
 • Uncertainties
 – Epistemic
 – Aleatory

• Empirical analysis of tsunami run-up and amplitude data
 – Based solely on the historical record of tsunamis at a particular location
 – Tsunami amplitudes follow a frequency-size distribution over a long amount of time
 – Catalog completeness is an important factor
Example of a Final Result

500-year tsunami map
Maximum tsunami wave heights
with 0.2% annual probability of exceedance

Tsunami Pilot Study Working Group
Joint NOAA (PMEL)/USGS/FEMA
Special Report, 103 p., 7 appendices

http://pubs.usgs.gov/of/2006/1234
Thank you