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Abstract
Beggiatoaceae, giant sulphur-oxidizing bacteria, are well known to occur in cold and tem-

perate waters, as well as hydrothermal vents, where they form dense mats on the floor.

However, they have never been described in tropical marine mangroves. Here, we describe

two new species of benthic Beggiatoaceae colonizing a marine mangrove adjacent to man-

grove roots. We combined phylogenetic and lipid analysis with electron microscopy in order

to describe these organisms. Furthermore, oxygen and sulphide measurements in and ex
situ were performed in a mesocosm to characterize their environment. Based on this, two

new species, CandidatusMaribeggiatoa sp. and Candidatus Isobeggiatoa sp. inhabiting

tropical marine mangroves in Guadeloupe were identified. The species identified as Candi-
datusMaribeggiatoa group suggests that this genus could harbour a third cluster with or-

ganisms ranging from 60 to 120 μm in diameter. This is also the first description of an

Isobeggiatoa species outside of Arctic and temperate waters. The multiphasic approach

also gives information about the environment and indications for the metabolism of these

bacteria. Our study shows the widespread occurrence of members of Beggiatoaceae family

and provides new insight in their potential role in shallow-water marine sulphide-rich envi-

ronments such as mangroves.

Introduction
Beggiatoa spp. are multicellular, filamentous colorless bacteria. Since their discovery by Vau-
cher in 1803, they are considered among the largest sulphur-oxidizing bacteria in nature [1].
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Members of this genus are widespread in marine and freshwater environments. They often
form mats on strongly reduced, organic or hydrocarbon-rich porous sediments, with sufficient
interstitial space for motility [2]. Members of the Beggiatoaceae usually move by gliding motili-
ty [3] in order to respond to chemical signals [4]. They grow at the oxic/anoxic interface. They
are usually found at the surface or within the top few centimeters of sulphide-rich sediments.

In marine environments, Beggiatoa spp. occur in different benthic habitats including hydro-
thermal vents [5], decomposing organic debris [6] and cold seeps [7]. In these environments,
sulphide could be produced by fluid diffusion from geological sources (e.g. hydrothermal
vents) or could also result from biological activity of the sulphate-reducing bacteria (SBR) me-
tabolizing sulphate to sulphur [2,8]. Thus, Beggiatoa spp. are encountered from deep to coastal
waters, and from cold to tropical waters [3,9,10,11]. In tropical environments, they often live
together with phototrophic organisms such as cyanobacteria or micro-algae [9].

Marine mangroves are well known to be sulphide-rich environments [12]. Several sulphur-
oxidizing bacteria were identified in these habitats, as free-living bacteria or as symbionts asso-
ciated either with archaea [13], protists [12,14,15,16] or metazoans [16,17,18]. Beggiatoamats,
as well as mats of cyanobacteria, have already been observed in mangrove soils [19,20]. Howev-
er, to our knowledge, no molecular characterizations of tropical strains of Beggiatoaceae from
marine mangroves have ever been described.

Beggiatoa spp. are chemolithotrophic microorganisms, oxidizing sulphides to elemental sul-
phur [21]. Elemental sulphur is usually stored in internal small vesicles giving the mats a white
appearance. In a second step, when sulphur lacks in the environment, it is further oxidized to
sulphate [22]. The sulphur-oxidizing metabolism can be determined using different ap-
proaches. In culture, sulphur-oxidizing bacteria can grow in presence of sulphur [11]. A molec-
ular approach identifying the genes involved in sulphur oxidation pathways (i.e. apr or sox
genes) [23,24] or measurements of the negative δ13C content proving Beggiatoa chemoautotro-
phy [25,26] can also be performed. Moreover, Energy-Dispersive X-ray (EDX) and Raman
spectroscopy have already been used in a few studies in order to detect the elemental sulphur
stored in the sulphur-oxidizing microorganisms [16,18,27]. These autotrophic bacteria require
CO2 for growth, but can also use acetate as a carbon source [28]. Furthermore, Beggiatoa spe-
cies are involved in the nitrogen cycle, the large vacuolated species being capable of nitrate res-
piration [29], whereas non-vacuolated species can use both nitrate and nitrite as nitrogen
sources [30]. Recently, some species have also been identified as diazotrophs [31]. Thus, their
contribution to the sulphur, carbon and nitrogen biogeochemical cycles allows these species to
recycle the chemical elements and provide food for heterotrophic organisms [32].

Here, we describe the major bacteria forming a marine mangrove white mat in Guadeloupe
(French West Indies) and identify them as two new species of large filamentous sulphur-
oxidizing affiliating with the family Beggiatoaceae. Phylogenetic analysis based on 16S rDNA
gene, ultrastructural and biochemical analyses as well as in situ hybridization were conducted
to identify the new organisms. Lipid analysis was also carried out to support the phylogeny.
EDX cartography was performed to assess the autotrophic character of these species. Finally,
we characterized the chemical environment of the mat, performing measurements of sulphides
and oxygen rates under mesocosm conditions.

Materials and Methods

Sampling
Colorless filaments were collected in marine mangrove of Guadeloupe (French West Indies) at
16°N, 61.5°W. They were sampled with 60 mL syringe and placed in large glass Petri dishes
once back to the lab in order to select the filaments under a dissecting microscope. No specific
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permissions were required from these locations and activities. Our study did not involve en-
dangered or protected species.

Fluorescence in situ Hybridization
Colorless filaments were prepared for FISH analysis according to previously described proto-
cols [13]. After hybridization, samples were observed in MilliQ water with a drop of Vecta-
shield using an epifluorescence Nikon microscope Eclipse 80i.

FISH analyses were performed using universal probes for Bacteria (EUB 338) [33],
NON338 [34], as negative control and BEG572 (5’-CAACCGCCTACGTACGCT-3’) and
BEG282 (5’-GGATTGCTGTCTTGGTAAGC-3’) for morphotype 1 and morphotype 2, re-
spectively, that were specifically designed from the 16S rDNA bacterial sequences obtained in
this study.

The specific probes (labelled with Cy3) were designed manually. Probes 16S ss-rRNA locali-
zation was optimized according to Fuchs et al. [35]. The probe’s specificity was further tested
with the online Probes Match tool provided by the Ribosomal Database Project [36].

Ultrastructural analysis
The ultrastructure of the colorless filaments was determined using a Scanning Electron Micro-
scope (SEM Quanta 250, FEI). To this end, the bacterial filaments were fixed at 4°C in 2.5%
glutaraldehyde in 0.1M cacodylate buffer (pH 7.2) which was made iso-osmotic to sea water by
addition of sodium chloride and calcium chloride. Samples were then kept at 4°C until analysis.
For conventional SEM analysis, samples were briefly rinsed, then dehydrated through a graded
acetone series before drying with CO2 using a critical point drier machine (EM CPD300,
Leica). The samples were then sputter-coated with gold (Sputter Coater SC500, Biorad).

For EDX analysis, in order to avoid salt crystallization, samples were rinsed three times with
deionized water, before observation with an ESEM Quanta 250 (FEI) operating from 10 to
20 kV under an environmental pressure of 7 Torrs at 5°C. EDX spectra were obtained using a
M-max 500 mm2 Oxford detector.

For Transmission Electron Microscopy (TEM) analysis, prefixed bacterial filaments were
washed twice in 0.1M sodium cacodylate buffer in order to remove aldehydes before fixation
for 45 min at room temperature in 1% osmium tetroxide in the same buffer. Then, samples
were rinsed in distilled water, and post-fixed with 2% aqueous uranyl acetate for one hour
more. After a rinse in distilled water, each sample was dehydrated through a graded acetone se-
ries and embedded in Epon-Araldite [37]. Thin sections (60 nm thick) were contrasted 30 min
in 2% aqueous uranyl acetate and 10 min in 0.1% lead citrate before examination in a TEM
LeO 912.

DNA extraction and PCR amplification
DNA was extracted from colorless filaments using DNeasy Blood & Tissue kit (Qiagen) ac-
cording to the manufacturer’s instructions. 16S rDNA were amplified using primers 8F/ 907R
(for morphotype 1) and 8F/1492R (for morphotype 2) as previously described [38, 39]. PCR
amplifications were performed as follows: 95°C for 5 min, 35 cycles of 94°C 30 s, 58°C 45 s,
72°C 1min 30 sec and finally 72°C 7 min. PCR products were purified using QIAquick PCR pu-
rification Kit (Qiagen) and cloned with pGEM-T cloning kit (Promega) according to manufac-
turer’s instructions. Inserts from 20 positive clones of each construction were fully sequenced
by Genoscreen (http://www.genoscreen.com) using vector primers T7 and SP6. The sequences
obtained in this study were deposited in the GenBank database under accession no. KF892059
and KF892060.
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Phylogenetic analysis
The 16S rDNA gene sequences obtained were compared with the National Center of Biotech-
nology information (NCBI) (http://www.ncbi.nlm.nih.gov) database using BLAST [40]. Best
hits were included in phylogenetic analyses. The phylogenetic analyses were conducted using
MEGA version 5 [41]. Sequences were aligned using SINA alignment service [42] of the SILVA
web site (http://www.arb-silva.de) and alignments were checked manually. The phylogenetic
tree was constructed from the multiple-aligned data using the Neighbor Joining (NJ) method
with Tamurai-Nei as genetic distance model. Nodes robustness was assessed by performing
1000 bootstrap replicates, and only bootstrap values above 49% are indicated at the nodes of
the tree. Leucothrix mucor, Thiothrix nivea, and Achromatium spp were used as outgroup.

Nomenclature
The electronic version of this article in Portable Document Format (PDF) in a work with an
ISSN or ISBN will represent a published work according to the International Code of Nomen-
clature for algae, fungi, and plants, and hence the new names contained in the electronic publi-
cation of a PLOS ONE article are effectively published under that Code from the electronic
edition alone, so there is no longer any need to provide printed copies.

The online version of this work is archived and available from the following digital reposito-
ries: PubMed Central, LOCKSS.

Lipid characterization
Lipids were extracted from freeze-dried biomass of the two morphotypes using a modified Bligh
and Dyer extraction [43]. The extracts were subjected to acidic methanolysis (ibid.) in order to
remove polar head groups and to obtain free fatty acids. An aliquot was methylated with BF3-
MeOH, treated with BSTFA in pyridine and subsequently analyzed by gas chromatography-
mass spectrometry (GC-MS) using a TRACE GC with a DSQ-MS, using a fused silica capillary
column (25 m, 0.32 mm internal diameter) coated with CP Sil-5 (film thickness 0.12 μm) and
helium as a carrier gas. To determine the double bond position of the fatty acids, they were de-
rivatized with dimethyldisulfide/I2 and the resulting methyltioethers were analysed by GC/MS.

Sulphide measurements
In situmeasurements. In an attempt to characterize the in situ conditions, 10 measurements
were performed in sediment areas covered by the white bacterial mat with autonomous poten-
tiometric captors. Sulphide and pH captors were both used in order to calculate the sulphide
rates. The sulphide and the pH measuring system were the same as the one previously de-
scribed [12] and have been used in various habitats [12,44]. The electrodes were calibrated in
the laboratory before deployment.

A series of 10 short term measurements was performed in 1 cm sediment under several
patches of white mat with tightly attached sulphide and pH electrodes. The average of these
measurements was calculated with standard deviation.

Mesocosm measurements. Mangrove sediment was brought to the laboratory and installed
in a glass recipient until the sediment was reorganized. Mat was collected from the field the
day after and transferred immediately (within 1 hour) into the mesocosm on the sediment (see
S1 Fig.).

Oxygen and sulphide profile measurements were carried out using Clark-style oxygen
(Oxy100) and sulphide (H2S100) microsensors with a 10μm tip manufactured by Unisense
(Aarhus, Denmark) connected to a four channel Unisense picoammeter. Calibrations were
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performed according to Unisense instructions. The pH was measured with autonomous probe
similar to the one described [44] fixed to the micromanipulator.

Vertical profiles were determined by moving the microelectrodes using a micromanipulator
into the mat and recording the electrical current with SensorBasic software. Total sulphide con-
centrations (S2-tot = H2S+HS-+S2-) were calculated taking into account the measured pH and
salinity [45] using a pK = 6.51.

Results

Morphology
The large colorless filamentous microorganisms were collected from extensive white mats
(Fig. 1a) located near the Rhizophora mangle roots in the tropical mangrove swamp in Guade-
loupe. By light microscopy, it was noticed that the mat was composed mainly of 2 morphotypes
with large colorless filaments (Fig. 1b).

The two colorless morphotypes described here are assemblages of cells constituting fila-
ments of a total length of up to 30 mm (Fig. 2 a, d.). Light microscopy observations showed
that the filaments of morphotype 1 (Fig. 2a-b; Fig. 3a) are an assemblage of discoid cells of
60 μmwide and 18.6 μm long, whereas the filaments of morphotype 2 (Fig. 2d) are a chain of
cylindrical smaller cells, up to 30 μmwide and 3.8 μm long. In both filaments, small vesicles
can be observed in the cells and the external membrane appeared thicker due to the presence of
a thin sheath which can be removed by critical point treatment in SEM observations.

SEM (Fig. 3a) and TEM (Fig. 3c-d) observations showed that no external bacteria are en-
countered on the filament. The small vesicles visible under a light microscope (Fig. 2a-b) ap-
peared, according to SEM observations, as pasted to the cell inner membranes. However, none
of these vesicles were observed on the membranes separating two adjacent cells within the
same filament (Fig. 3a). This observation was confirmed by TEM sections, which showed that
these vesicles were linked to the inner membrane but not merged with it (Fig. 3c). No free vesi-
cles were observed in the cell cytoplasm, whatever section orientation was used (Fig. 3c-d). Be-
cause sulphur is dissolved during dehydration processes, these empty vesicles observed in SEM

Fig 1. Photographs of the Beggiatoamat. Underwater picture of patches of white mat on the mangrove sediment (a). Sample of colorless filaments
observed under dissecting microscope (b): Two morphotypes are visible; black arrowheads indicate morphotype 1, and white arrows indicate morphotype 2.

doi:10.1371/journal.pone.0117832.g001
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fracture (Fig. 3b) and TEM sections (Fig. 3c-d) could be identified as sulphur vesicles. Their
identification was performed with EDX analysis (Fig. 4). The entire bacterial content appeared
projected over the outside of the cell, attached to the inner membranes, releasing a central
space not bounded by a membrane.

Phylogenetic analysis
The phylogenetic analysis was performed accordingly to the modern classification of large sul-
phur bacteria [41]. Neighbor-Joining (NJ) tree based on partial 16S rDNA sequences (925bp)
revealed that the morphotype 1 forms a distinct clade with Uncultured Beggiatoa sp. clone
WF120μm (Fig. 5) which falls into CandidatusMaribeggiatoa group [5]. The sister group was
supported by the robust branch of the phylogenetic tree (100% bootstrap support from 1000
replicates). In contrast, phylogenetic analysis identified morphotype 2 as a sister group of Can-
didatus Isobeggiatoa spp. Thus, we proposed to name morphotype 1 strain as Candidatus Beg-
giatoa sp. Guadeloupe FWI and morphotype 2 strain as Candidatus Isobeggiatoa sp.
Guadeloupe FWI in reference to the sister group they belong to and to the sampling site: Gua-
deloupe French West Indies.

The phylogenetic relationship of these two species was checked by in situ hybridization
using specific probes (BEG572F for morphotype 1 and BEG282F for morphotype 2) designed
from each bacterial sequence obtained in this study (Fig. 2b, e). The positive hybridization

Fig 2. Structure and identification of the two Beggiatoamorphotypes. Light microphotographs of morphotype 1 (a) and morphotype 2 (d), respectively.
White arrows highlight the white sheath, the black arrows point out the membranes separating two bacterial cells, and the dotted arrows highlight the sulphur
vesicles. The apex of the morphotype 1 filament is marked by a black star. The right identification of the two morphotypes is confirmed by the positive
hybridization with the specific probes (BEG572F for morphotype 1 and BEG282F for morphotype 2) designed from each bacterial sequence obtained in this
study (b and e are morphotypes 1 and 2, respectively). NONEUB probe was used as negative control (c and f for morphotypes 1 and 2, respectively).

doi:10.1371/journal.pone.0117832.g002
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shown in Fig. 2b, e shows that the two morphotypes observed in the white mat correspond to
the phylogenetic sequences previously obtained. A negative control was performed using
NON338 probe (Fig. 2c, f). Lipid analysis showed that the fatty acids mainly consisted of C16

and C18 fatty acids with 0–1 double bonds and minor amounts of C20 fatty acids in both mor-
photypes, with morphotype 2 containing significant amounts of a C20 polyunsaturated fatty
acid (Table 1). The double bond position in the C18:1 fatty acid in morphotype 2 was deter-
mined by DMDS adduction as ω-7, and, while concentrations of C16:1 and C18:1 fatty acids in
morphotype 1 were too low for analysis after derivatization, retention times indicate an ω-7 po-
sition for those too.

Sulphur-oxidizing metabolism
In our study, EDXS analysis was performed using an environmental SEM (ESEM) allowing the
observation of fully hydrated biological samples, and thus elemental sulphur was not dissolved
during the preparation process of the samples. The EDX spectra showed that sulphur is the
main element present within the organisms (Fig. 4a, b). Moreover, EDX cartography allowed
to localize the elemental sulphur within granules that appeared as empty vesicles according to
conventional SEM (Fig. 3b) and TEM pictures (Fig. 3c, d). Thus, both structural and EDXS

Fig 3. Ultrastructure of the two Beggiatoamorphotypes. SEMmicrophotographs of morphotype 1 (a-b).
These images highlighted small vesicles (white arrows) absent from the membranes separating two adjacent
cells (dotted arrows). On higher magnification (b), some of these vesicles are fractured (white arrows), and
appeared linked to the membranes. TEMmicrophotographs of the morphotype 1 (c) and morphotype 2 (d)
highlight a large central empty space with all the cytoplasmic content postponed on the external membranes.
The small vesicles (black arrows) also appear empty due to the loss of sulphur during dehydration process.
They are absent from the membranes (dotted arrows) separating two adjacent cells.

doi:10.1371/journal.pone.0117832.g003
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analyses demonstrate that the vesicles observed by light and electron microscope are sulphur
storage granules (Fig. 2a, d; Fig. 3a-b).

Sulphide measurements
In order to characterize the mat environment in its natural biotope, in situ sulphide measure-
ments were performed. The values obtained in mangrove from the ten profiles ranged from
189 μM to 2396 μM, with an average of 1187 μM (±728). Profiles from mesocosm experiments
in the laboratory, in presence or absence of a bacterial mat, are shown in Fig. 6. In absence of
bacterial mats (Fig. 6a), oxygen penetrated 0.5 mm into the sediment while sulphides were de-
tected (detection level ~1 μM) below a depth of 0.2 mm. Sulphide concentrations reached
988 μM (± 627) at 0.5 mm depth and increased continuously with depth. Therefore, the anaer-
obic sulphate-reducing bacteria (SBR) contained in the sediment were functional and produced
sulphides by degradation of the organic matter by sulphate reduction.

In contrast, when the bacterial mat was present on the sediment (Fig. 6b), the oxygen con-
centration in the water column gradually decreased from 153 μM (± 45) to zero 3 mm above
the sediment while sulphides were detected before entering the sediment. It was also observed
that sulphide rates increased with depth until 3 mm with a maximum of 8197 μM (± 6030) and
then decreased.

In the presence of the mat, a slope rupture of the sulphide concentration curve can be no-
ticed, which means that the sulphide concentrations decreased quicker in the mat than in the
sediment while it diffused to the surface. This data suggests that the bacterial mat consumed
the sulphides coming from the sediment (due to SBR activity) quicker than natural sulphide
oxidation by oxygen present in the seawater.

Fig 4. Sulphide metabolism of the Beggiatoa spp. The EDX spectra of morphotypes 1 (a) and 2 (b)
obtained from non-dehydrated samples observed under an ESEM showed that the bacteria contain
elemental sulphur. The sulphur mapping localizes this element (marked in red) inside the cells within the
cytoplasmic granules (c and d).

doi:10.1371/journal.pone.0117832.g004
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Discussion

Phylogenetic placement of the new Beggiatoaceae species
In this study we described two new species of Beggiatoaceae family, which are forming micro-
bial mats in marine mangroves from the Caribbean. According to the recently updated large
sulphur bacteria phylogeny by Salman et al [46,47] our sequences studied here belong to two
distinct taxa, Candidatus Isobeggiatoa sp. and CandidatusMaribeggiatoa sp., and share many
characteristics with Beggiatoa alba, the type specie of Beggiatoaceae. In fact, for the two bacteria
described here, the same morphology can be observed: multicellular filaments harbouring dis-
coid cells with sulphur granules visible into incident light. Furthermore, both filaments can
move by gliding on solid surface and possess a sheath.

Morphotype 1 is phylogenetically close to another bacterial species of 120 μm diameter
identified asMaribeggiatoa [5] suggesting a division based on cell diameter within theMaribeg-
giatoa genus: one cluster harbouring species with a diameter between 12 to 18 μm, and a sec-
ond one with diameter between 25 to 37 μm. Our data suggest that morphotype 1 and

Fig 5. Neighbor joining (NJ) tree displaying the phylogenetic relationships between theCandidatus Beggiatoa sp. Guadeloupe FWI and
Candidatus Isobeggiatoa sp. Guadeloupe FWI (in bold) with other colorless large sulphur bacteria. Phylogenetic tree based on the analysis of 16S
rDNA gene sequences of 925 nucleotides. Node robustness was assessed by performing 1000 bootstrap replicates. Only bootstrap values more than 49%
are shown at each node. Leucothrix mucor, Thiothrix nivea, and Achromatium spp were used as outgroup. The scale bar corresponds to 0.02 changes
per nucleotide.

doi:10.1371/journal.pone.0117832.g005
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Uncultured Beggiatoa sp. clone 120 μm reported by Mckay et al. could form a third cluster
with diameters ranging from 60 μm to 120 μm [5]. Additional phylotypes and new taxa identi-
fication are needed in order to clarify this cluster. In contrast, morphotype 2 clearly belongs to
Isobeggiatoa group, which only gathers filaments with diameters between 10 and 40 μm. Inter-
estingly, the sequence obtained here only shared 94% identity with available sequences from

Table 1. Distribution of fatty acid methyl esters (FAME) in both morphotypes in % as determined by
GC-MS.

ORGANISMS FAME %

Morphotype 1 C16:1 6.6

C16:0 19.3

C18:1 19.8

C18:0 50.7

C20:0 3.6

Morphotype 2 C16:1 7.5

C16:0 26.5

C18:1 51.1

C18:0 7.7

C20:pufa 7.2

Numbers indicate carbon numbers and number of double bonds if any, as well as double bond position if

determined. pufa = polyunsaturated fatty acid.

doi:10.1371/journal.pone.0117832.t001

Fig 6. Vertical distribution of sulphide and oxygen in mangrove sediment under mesocosm conditions. Representative (square) total sulphide and
(triangle) oxygen microgradients measured into the sediment on the mesocosm system (a) without mat and (b) with mat. Concentrations are expressed in
μM. Error bars = one standard deviation of the mean.

doi:10.1371/journal.pone.0117832.g006

Large Beggiatoa Colonizing Marine Mangrove

PLOS ONE | DOI:10.1371/journal.pone.0117832 February 17, 2015 10 / 16



Genbank. According to some authors, percentages lower than 95% could indicate a new genus
[48,49]. Furthermore, all the Isobeggiatoa spp. sequences available are from cold temperate
water species (Denmark and Germany), and Antarctic environments [46].

The results of the lipid analysis (Table 1) confirmed the genetic results, as the main fatty
acids detected contained 16 and 18 carbon atoms with 0–1 ω-7 double bonds, concurrent with
previously published results for Beggiatoa [50,51] and other sulphur-oxidizing bacteria Thio-
ploca and Thiomargarita [51,52]. Interestingly, Jacq and co-authors [53], who characterized
two types of filamentous bacteria retrieved from subtidal hydrothermal vents in southern Cali-
fornia, were the only ones to also report small, but significant amounts of polyunsaturated C20

fatty acids in both phenotypes. A C20 polyunsaturated fatty acid was only detected in morpho-
type 2, phylogenetically characterized here as Isobeggiatoa, but was absent in morphotype 1
(i.e. Beggiatoa), suggesting that the Beggiatoa-like mats observed in subtidal hydrothermal
vents may have been Isobeggiatoa [53]. C15 and C17 fatty acids, which are characteristic for sul-
phate-reducing bacteria, were absent.

This result shows that information based on 16S rRNA gene sequences is insufficient to
identify new species and how it is necessary to use multiphasic approach to classify them. Nev-
ertheless, further molecular investigations involving additional marker genes (i.e. 23S rDNA,
ITS) and other multiphasic approach (e.g., physiological traits) could be used in order to re-
solve in depth the phylogeny of these species [46].

Sulphur metabolism of the new Beggiatoa species
Beggiatoamats, as all microbial mats, are self-sustaining communities that support all major
biogeochemical cycles [54]. The characterization of their chemical environments, either in situ
or in mesocosms, by sensor measurements can provide information about their contributions
to the ecosystem [55,56,57]. Mesocosm measurements were similar to those observed in previ-
ous studies undertaken in marine mangroves. Sulphide concentration increased with depth in
the sediment in absence of mat [12,58]. Moreover, in our study, under the Beggiatoamat, a de-
crease of sulphide concentration was observed after 4 mm depth. This phenomenon was al-
ready noticed in an ultramafic hydrothermal vent field [59], and in a sulfidic cave [60] where
the sulphide rate did not only increase with depth, as shown in numerous studies [19,61]. No
explanation for this phenomenon was given in the hydrothermal vent. However, Macalady
et al. showed that in the sulfidic caves, it could be explained by diffusion-controlled transport
and also by the fact that in sulfidic caves, sulphides diffused both from water above and from
sediment below [60].

Measurements in a mangrove under a Beggiatoamat showed that oxygen was fully con-
sumed 2 cm above the mat [19]. In our study, an anoxic zone was present a few mm above the
mat. Furthermore, under the filament network, sulphide concentrations were more important
in the mesocosms than previously reported in literature. Indeed, a concentration of 1489 μM
(± 1328) of sulphide was reached at 2 mm depth into the sediment in mesocosm, whereas in
our in situmeasurements, at 1 cm, we measured an average concentration of sulphide of
1193 μM (±728), similar to the measurements performed in the Twin Cays mangrove, where
1400 μM (± 1000) is reached at 1 cm depth [19]. Although concentrations are higher in meso-
cosm at this depth, at 1 cm, they are lower in the mesocosm than in situ. A significant heteroge-
neity existed within the sediment, in situ, and in the mesocosm as evident by the large standard
deviations. This heterogeneity allowed us, to date, to consider the mesocosm as similar to in
situ conditions. To our knowledge, no study has been conducted in mangrove habitats on Beg-
giatoamats using microprobes. The concentrations measured by Lee et al. were obtained by
colorimetry [19], with less precision than the measurements performed here using probes.
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In two previous studies done in mangrove environments, sulphide concentrations were al-
ways lower than 1000 μM for 10 cm depth [12,58]. However, the locations were not next to or
under Beggiatoamats which are expected to be present at places where higher sulphide concen-
trations are available. Indeed, members of the Beggiatoaceae family are known to migrate in
order to find the best gradient sulphur/oxygen for their development [62,63]. High currents or
other mechanisms could also explain the mats’ localization into the mangroves.

Our results are similar to those obtained in other environments. In hydrothermal vents and
in the Santa Barbara Basin, it was shown that all oxygen was consumed within the first millime-
ters of the sediment while sulphide concentrations increased with depth [59,64]. However, in
these two environments the sulphide concentrations were 25 to 150 times lower than those ob-
served during our mesocosm experiment. In the hydrothermal vents, the maximum of sulphide
concentration observed was 250 μM at 30 mm sediment depth [59], and in the Santa Barbara
basin, a maximum of 50 μMwas observed at 12 mm sediment depth [64].

The morphological study of Candidatus Beggiatoa sp. Guadeloupe FWI and Candidatus
Isobeggiatoa sp. Guadeloupe FWI, highlighted that the sulphur inclusions visible in SEM and
TEM images and identified by EDX, are joined to the plasmic membrane and are absent from
membranes separating two adjacent cells. However, it was impossible to distinguish whether
the sulphur granules were surrounded by a single membrane against the outer membrane, in
invaginations of the cytoplasmic membrane, as previously suggested [28].

The Beggiatoa species described here are the predominant species in the filament network
and thus probably the main microorganisms responsible for the sulphur consumption ob-
served in the mat. Nevertheless, other sulphur-oxidizing bacteria could also participate in sul-
phide oxidation. The presence and activity of bacteria other than the giant Beggiatoa spp. were
not determined in this study. Mesocosm measurements showed that, while oxygen was absent
from the first millimeter of the mat, Beggiatoa cells were still present. These were probably cells
from the anaerobic layer using dissimilatory nitrate reduction to ammonium in order to oxi-
dize sulphur. Their need to oxidize sulphur and/or ammonia would cause migration to the oxic
sediment layer. Indeed, SEM and TEM images highlighted a large free space in the cell with all
the cytoplasmic content positioned against the outer membrane of the cell. These large vacu-
oles could be the nitrate vacuoles already encountered in previous large marine Beggiatoa spp.
[27,29,63,65,66], and observed in Isobeggiatoa andMarithioploca strains [41]. These nitrate
vacuoles allow the bacteria to survive anaerobically, oxidizing sulphides through nitrate reduc-
tion into dihydrogen and ammonia [1,30,67,68,69].

In our study, the internal component of the central space was not identified but TEM im-
ages showed that the empty area has no intracytoplasmic membrane. This is in accordance
with De Albuquerque et al., who showed that the vacuoles have no internal membranes into
marine and hypersalines studied mats [27], as observed also in Thioploca [69]. However, some
marine sulphur-oxidizing bacteria from Thiothrix genera showed such vacuoles with no nitrate
accumulation [70]. Thus, in absence of more information about the nature of the vacuoles and
the nitrification rates of the mat, it is impossible to draw conclusions on the metabolism of ni-
trogen in these two new species of Beggiatoaceae.

It could be interesting to study the ammonium consumption of the Beggiatoamat in marine
mangrove in order to estimate their contribution to the nitrogen cycle regarding the mat com-
position. Furthermore, a recent study has shown that some non-marine Beggiatoa spp. from
sulfidic caves are able to fix nitrogen [31]. This suggests that is possible that also Candidatus
Beggiatoa sp. Guadeloupe FWI and Candidatus Isobeggiatoa sp. Guadeloupe FWI could
fix nitrogen.

The Beggiatoamats are also known to provide food for benthic foraminifera in temperate
tidal flats and Antarctic shallow waters [64], but also for meiofauna and macrofauna of the
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Denmark cold waters [61]. In mangroves, the interactions between meiofauna and microbial
mats have shown that some nematods and annelids feed on these mats, so the mat could be the
source of a complex food web [71]. Thus, a detailed study of the interactions between these
compartments will help to understand how the Beggiatoamats contribute to the
mangrove ecosystem.

This multidisciplinary study has revealed two new species ofMaribeggiatoa and Isobeggia-
toa, inhabiting the marine mangrove. This study is the first evidence for the presence of Isobeg-
giatoa spp. outside of northern Europe or Arctic waters. The multiphasic approach with use of
microprobes, electron microscopy, lipid and phylogenetic analysis, has provided detailed infor-
mation on species, and their sulphidic environment. Furthermore, the mesocosm study ad-
dresses some issues of the metabolism of these two species; and the results indicate that the role
of the central vacuole is related to the dissimilatory nitrate reduction to ammonium. Our re-
sults are a first approach to ultimately understand the contribution of Beggiatoaceae-
dominated microbial mats to the biochemical cycles and food web of mangroves. They could
constitute a base for further studies dealing with marine mangrove microbial mats.
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